Skip to main content

Advertisement

Log in

Free fatty acid receptor 1: a ray of hope in the therapy of type 2 diabetes mellitus

  • Review
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Free fatty acid receptor 1 (FFAR1) is a G-protein coupled receptor with prominent expression on pancreatic beta cells, bones, intestinal cells as well as the nerve cells. This receptor mediates a multitude of functions in the body including release of incretins, secretion of insulin as well as sensation of pain. Since FFAR1 causes secretion of insulin and regulates glucose metabolism, efforts were made to unfold its structure followed by discovering agonists for the receptor and the utilization of these agonists in the therapy of type 2 diabetes mellitus. Development of such functional FFAR1 agonists is a necessity because the currently available therapy for type 2 diabetes mellitus has numerous drawbacks, of which, the major one is hypoglycemia. Since the most prominent effect of the FFAR1 agonists is on glucose concentration in the body, so the major research is focused on treating type 2 diabetes mellitus, though the agonists could benefit other metabolic disorders and neurological disorders as well. The agonists developed so far had one major limitation, i.e., hepatotoxicity. Although, the only agonist that could reach phase 3 clinical trials was TAK-875 developed by Takeda Pharmaceuticals but it was also withdrawn due to toxic effects on the liver. Thus, there are numerous agonists for the varied binding sites of the receptor but no drug available yet. There does seem to be a ray of hope in the drugs that target FFAR1 but a lot more efforts towards drug discovery would result in the successful management of type 2 diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  • Araki T, Hirayama M, Hiroi S, Kaku K (2012) GPR40-induced insulin secretion by the novel agonist TAK-875: first clinical findings in patients with type 2 diabetes. Diabetes Obes Metab 14(3):271–278

    Article  CAS  PubMed  Google Scholar 

  • Baggio LL, Drucker DJ (2007) Biology of incretins: GLP-1 and GIP. Gastroenterology 132(6):2131–2157

    Article  CAS  PubMed  Google Scholar 

  • Bartoov-Shifman R, Ridner G, Bahar K, Rubins N, Walker MD (2007) Regulation of the gene encoding GPR40, a fatty acid receptor expressed selectively in pancreatic β cells. J Biol Chem 282(32):23561–23571

    Article  CAS  PubMed  Google Scholar 

  • Briscoe CP, Tadayyon M, Andrews JL, Benson WG, Chambers JK, Eilert MM, Ellis C, Elshourbagy NA, Goetz AS, Minnick DT, Murdock PR (2003) The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem 278(13):11303–11311

    Article  CAS  PubMed  Google Scholar 

  • Briscoe CP, Peat AJ, McKeown SC, Corbett DF, Goetz AS, Littleton TR, McCoy DC, Kenakin TP, Andrews JL, Ammala C, Fornwald JA (2006) Pharmacological regulation of insulin secretion in MIN6 cells through the fatty acid receptor GPR40: identification of agonist and antagonist small molecules. Br J Pharmacol 148(5):619–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown AJ, Jupe S, Briscoe CP (2005) A family of fatty acid binding receptors. DNA Cell Biol 24(1):54–61

    Article  CAS  PubMed  Google Scholar 

  • Burant CF, Viswanathan P, Marcinak J, Cao C, Vakilynejad M, Xie B, Leifke E (2012) TAK-875 versus placebo or glimepiride in type 2 diabetes mellitus: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet 379(9824):1403–1411

    Article  CAS  PubMed  Google Scholar 

  • Cartoni C, Yasumatsu K, Ohkuri T, Shigemura N, Yoshida R, Godinot N, Le Coutre J, Ninomiya Y, Damak S (2010) Taste preference for fatty acids is mediated by GPR40 and GPR120. J Neurosci 30(25):8376–8382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman ER, Blasi J, An S, Brose N, Johnston PA, Südhof TC, Jahn R (1996) Fatty acylation of synaptotagmin in PC12 cells and synaptosomes. Biochem Biophys Res Commun 225(1):326–332

    Article  CAS  PubMed  Google Scholar 

  • Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ (2001) Nuclear receptors and lipid physiology: opening the X-files. Science 294(5548):1866–1870

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Song M, Riley JP, Hu CC, Peng X, Scheuner D, Bokvist K, Maiti P, Kahl SD, Montrose-Rafizadeh C, Hamdouchi C (2016) A selective GPR40 (FFAR1) agonist LY2881835 provides immediate and durable glucose control in rodent models of type 2 diabetes. Pharmacol Res Perspect 4(6):e00278

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Ren Q, Zhou Z, Deng L, Hu L, Zhang L, Li Z (2020) HWL-088, a new potent free fatty acid receptor 1 (FFAR1) agonist, improves glucolipid metabolism and acts additively with metformin in ob/ob diabetic mice. Br J Pharmacol 177(10):2286–2302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Civelli O, Reinscheid RK, Zhang Y, Wang Z, Fredriksson R, Schiöth HB (2013) G protein–coupled receptor deorphanizations. Annu Rev Pharmacol Toxicol 6(53):127–146

    Article  Google Scholar 

  • Combettes-Souverain M, Issad T (1998) Molecular basis of insulin action. Diabetes Metab 24(6):477–489

    CAS  PubMed  Google Scholar 

  • Cornish J, MacGibbon A, Lin JM, Watson M, Callon KE, Tong PC, Dunford JE, van der Does Y, Williams GA, Grey AB, Naot D (2008) Modulation of osteoclastogenesis by fatty acids. Endocrinology 149(11):5688–5695

    Article  CAS  PubMed  Google Scholar 

  • De Meyts P (2004) Insulin and its receptor: structure, function and evolution. BioEssays 26(12):1351–1362

    Article  PubMed  Google Scholar 

  • Defossa E, Wagner M (2014) Recent developments in the discovery of FFA1 receptor agonists as novel oral treatment for type 2 diabetes mellitus. Bioorg Med Chem Lett 24(14):2991–3000

    Article  CAS  PubMed  Google Scholar 

  • Del Guerra S, Bugliani M, D’Aleo V, Del Prato S, Boggi U, Mosca F, Filipponi F, Lupi R (2010) G-protein-coupled receptor 40 (GPR40) expression and its regulation in human pancreatic islets: the role of type 2 diabetes and fatty acids. Nutr Metab Cardiovasc Dis 20(1):22–25

    Article  PubMed  Google Scholar 

  • Dixon G, Nolan J, McClenaghan N, Flatt PR, Newsholme P (2003) A comparative study of amino acid consumption by rat islet cells and the clonal beta-cell line BRIN-BD11-the functional significance of l-alanine. J Endocrinol 179(3):447

    Article  CAS  PubMed  Google Scholar 

  • Draznin B (2006) Molecular mechanisms of insulin resistance: serine phosphorylation of insulin receptor substrate-1 and increased expression of p85α: the two sides of a coin. Diabetes 55(8):2392–2397

    Article  CAS  PubMed  Google Scholar 

  • Ebina Y, Ellis L, Jarnagin K, Edery M, Graf L, Clauser E, Ou JH, Masiarz F, Kan YW, Goldfine ID, Roth RA (1985) The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signalling. Cell 40(4):747–758

    Article  CAS  PubMed  Google Scholar 

  • Edfalk S, Steneberg P, Edlund H (2008) Gpr40 is expressed in enteroendocrine cells and mediates free fatty acid stimulation of incretin secretion. Diabetes 57(9):2280–2287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eleazu C, Charles A, Eleazu K, Achi N (2018) Free fatty acid receptor 1 as a novel therapeutic target for type 2 diabetes mellitus-current status. Chem Biol Interact 1(289):32–39

    Article  Google Scholar 

  • Ellsworth BA, Shi J, Jurica EA, Nielsen LL, Wu X, Hernandez AH, Wang Z, Gu Z, Williams KN, Chen B, Cherney EC (2014) Discovery of BMS-986118, a dual MOA GPR40 agonist that produces glucose-dependent insulin and GLP-1 secretion. In: Abstracts of papers of The American Chemical Society (vol 248). 1155 16th St, NW, Washington, DC, 20036 USA: Amer Chemical Soc

  • Ferdaoussi M, Bergeron V, Kebede M, Mancini A, Alquier T, Poitout V (2012) Free fatty acid receptor 1: a new drug target for type 2 diabetes? Can J Diabetes 36(5):275–280

    Article  Google Scholar 

  • Flodgren E, Olde B, Meidute-Abaraviciene S, Winzell MS, Ahrén B, Salehi A (2007) GPR40 is expressed in glucagon producing cells and affects glucagon secretion. Biochem Biophys Res Commun 354(1):240–245

    Article  CAS  PubMed  Google Scholar 

  • Fontés G, Zarrouki B, Hagman DK, Latour MG, Semache M, Roskens V, Moore PC, Prentki M, Rhodes CJ, Jetton TL, Poitout V (2010) Glucolipotoxicity age-dependently impairs beta cell function in rats despite a marked increase in beta cell mass. Diabetologia 53(11):2369–2379

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu Z, Gilbert ER, Liu D (2013) Regulation of insulin synthesis and secretion and pancreatic beta-cell dysfunction in diabetes. Curr Diabetes Rev 9(1):25–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujiwara K, Maekawa F, Yada T (2005) Oleic acid interacts with GPR40 to induce Ca2+ signaling in rat islet β-cells: mediation by PLC and L-type Ca2+ channel and link to insulin release. Am J Physiol Endocrinol Metab 289(4):E670–E677

    Article  CAS  PubMed  Google Scholar 

  • Furukawa H, Miyamoto Y, Hirata Y, Watanabe K, Hitomi Y, Yoshitomi Y, Aida J, Noguchi N, Takakura N, Takami K, Miwatashi S (2020) Design and identification of a GPR40 full agonist (SCO-267) possessing a 2-carbamoylphenyl piperidine moiety. J Med Chem 63(18):10352–10379

    Article  CAS  PubMed  Google Scholar 

  • Gonzalo S, Linder ME (1998) SNAP-25 palmitoylation and plasma membrane targeting require a functional secretory pathway. Mol Biol Cell 9(3):585–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorski JN, Pachanski MJ, Mane J, Plummer CW, Souza S, Thomas-Fowlkes BS, Ogawa AM, Weinglass AB, Di Salvo J, Cheewatrakoolpong B, Howard AD (2017) GPR40 reduces food intake and body weight through GLP-1. Am J Physiol Endocrinol Metab 313(1):E37-47

    Article  PubMed  Google Scholar 

  • Governa P, Caroleo MC, Carullo G, Aiello F, Cione E, Manetti F (2021) FFAR1/GPR40: one target, different binding sites, many agonists, no drugs, but a continuous and unprofitable tug-of-war between ligand lipophilicity, activity, and toxicity. Bioorg Med Chem Lett 23:127969

    Article  Google Scholar 

  • Grundmann M, Bender E, Schamberger J, Eitner F (2021) Pharmacology of free fatty acid receptors and their allosteric modulators. Int J Mol Sci 22(4):1763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo DY, Li DW, Ning MM, Dang XY, Zhang LN, Zeng LM, Hu YH, Leng Y (2015) Yhhu4488, a novel GPR40 agonist, promotes GLP-1 secretion and exerts anti-diabetic effect in rodent models. Biochem Biophys Res Commun 466(4):740–747

    Article  CAS  PubMed  Google Scholar 

  • Hagman DK, Hays LB, Parazzoli SD, Poitout V (2005) Palmitate inhibits insulin gene expression by altering PDX-1 nuclear localization and reducing MafA expression in isolated rat islets of Langerhans. J Biol Chem 280(37):32413–32418

    Article  CAS  PubMed  Google Scholar 

  • Hamdouchi C, Kahl SD, Patel Lewis A, Cardona GR, Zink RW, Chen K, Eessalu TE, Ficorilli JV, Marcelo MC, Otto KA, Wilbur KL (2016) The discovery, preclinical, and early clinical development of potent and selective GPR40 agonists for the treatment of type 2 diabetes mellitus (LY2881835, LY2922083, and LY2922470). J Med Chem 59:10891–10916

    Article  CAS  PubMed  Google Scholar 

  • Hara T, Hirasawa A, Ichimura A, Kimura I, Tsujimoto G (2011) Free fatty acid receptors FFAR1 and GPR120 as novel therapeutic targets for metabolic disorders. J Pharm Sci 100(9):3594–3601

    Article  CAS  PubMed  Google Scholar 

  • Hara T, Kimura I, Inoue D, Ichimura A, Hirasawa A (2013) Free fatty acid receptors and their role in regulation of energy metabolism. Rev Physiol Biochem Pharmacol 164:77–116

    Article  CAS  PubMed  Google Scholar 

  • Hardy S, St-Onge GG, Joly É, Langelier Y, Prentki M (2005) Oleate promotes the proliferation of breast cancer cells via the G protein-coupled receptor GPR40. J Biol Chem 280(14):13285–13291

    Article  CAS  PubMed  Google Scholar 

  • Hauge M, Vestmar MA, Husted AS, Ekberg JP, Wright MJ, Di Salvo J, Weinglass AB, Engelstoft MS, Madsen AN, Lückmann M, Miller MW (2015) GPR40 (FFAR1)–combined Gs and Gq signaling in vitro is associated with robust incretin secretagogue action ex vivo and in vivo. Mol Metab 4(1):3–14

    Article  CAS  PubMed  Google Scholar 

  • Holst JJ (2007) The physiology of glucagon-like peptide 1. Physiol Rev 87(4):1409–1439

    Article  CAS  PubMed  Google Scholar 

  • Horowitz JF, Klein S (2000) Whole body and abdominal lipolytic sensitivity to epinephrine is suppressed in upper body obese women. Am J Physiol Endocrinol Metab 278(6):E1144–E1152

    Article  CAS  PubMed  Google Scholar 

  • Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444(7121):860–867

    Article  CAS  PubMed  Google Scholar 

  • Houze JB, Zhu L, Sun Y, Akerman M, Qiu W, Zhang AJ, Sharma R, Schmitt M, Wang Y, Liu J, Liu J (2012) AMG 837: a potent, orally bioavailable GPR40 agonist. Bioorg Med Chem Lett 22(2):1267–1270

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Meegalla SK, Lanter JC, Winters MP, Zhao S, Littrell J, Qi J, Rady B, Lee PS, Liu J, Martin T (2018) Discovery of a GPR40 superagonist: the impact of aryl propionic acid α-fluorination. ACS Med Chem Lett 10(1):16–21

    Article  PubMed  PubMed Central  Google Scholar 

  • Iizuka K, Nakajima H, Namba M, Miyagawa JI, Miyazaki J, Hanafusa T, Matsuzawa Y (2002) Metabolic consequence of long-term exposure of pancreatic β cells to free fatty acid with special reference to glucose insensitivity. Biochimica Et Biophysica Acta (BBA) Mol Basis Dis 1586(1):23–31

    Article  CAS  Google Scholar 

  • Itoh Y, Kawamata Y, Harada M, Kobayashi M, Fujii R, Fukusumi S, Ogi K, Hosoya M, Tanaka Y, Uejima H, Tanaka H (2003) Free fatty acids regulate insulin secretion from pancreatic β cells through GPR40. Nature 422(6928):173–176

    Article  CAS  PubMed  Google Scholar 

  • Jurica EA, Wu X, Williams KN, Hernandez AS, Nirschl DS, Rampulla RA, Mathur A, Zhou M, Cao G, Xie C, Jacob B (2017) Discovery of pyrrolidine-containing GPR40 agonists: stereochemistry effects a change in binding mode. J Med Chem 60(4):1417–1431

    Article  CAS  PubMed  Google Scholar 

  • Kaku K, Enya K, Nakaya R, Ohira T, Matsuno R (2015) Efficacy and safety of fasiglifam (TAK-875), a G protein-coupled receptor 40 agonist, in J apanese patients with type 2 diabetes inadequately controlled by diet and exercise: a randomized, double-blind, placebo-controlled, phase III trial. Diabetes Obes Metab 17(7):675–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kebede M, Alquier T, Latour MG, Semache M, Tremblay C, Poitout V (2008) The fatty acid receptor GPR40 plays a role in insulin secretion in vivo after high-fat feeding. Diabetes 57(9):2432–2437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kebede M, Ferdaoussi M, Mancini A, Alquier T, Kulkarni RN, Walker MD, Poitout V (2012) Glucose activates free fatty acid receptor 1 gene transcription via phosphatidylinositol-3-kinase-dependent O-GlcNAcylation of pancreas-duodenum homeobox-1. Proc Natl Acad Sci 109(7):2376–2381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagerström MC, Schiöth HB (2008) Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 7(4):339–357

    Article  PubMed  Google Scholar 

  • Lan H, Hoos LM, Liu L, Tetzloff G, Hu W, Abbondanzo SJ, Vassileva G, Gustafson EL, Hedrick JA, Davis HR (2008) Lack of FFAR1/GPR40 does not protect mice from high-fat diet–induced metabolic disease. Diabetes 57(11):2999–3006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latour MG, Alquier T, Oseid E, Tremblay C, Jetton TL, Luo J, Lin DC, Poitout V (2007) GPR40 is necessary but not sufficient for fatty acid stimulation of insulin secretion in vivo. Diabetes 56(4):1087–1094

    Article  CAS  PubMed  Google Scholar 

  • Lee RK, Vangaveti V, Jarrod G, Shashidhar V, Shashidhar V, Baune BT (2010) Free fatty acid receptors: emerging targets for treatment of diabetes and its complications. Ther Adv Endocrinol Metab 1(4):165–175

    Article  Google Scholar 

  • Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141(7):1117–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Liu C, Xu X, Qiu Q, Su X, Dai Y, Yang J, Li H, Shi W, Liao C, Pan M (2017) Discovery of phenylsulfonyl acetic acid derivatives with improved efficacy and safety as potent free fatty acid receptor 1 agonists for the treatment of type 2 diabetes. Eur J Med Chem 29(138):458–479

    Article  CAS  Google Scholar 

  • Li Z, Xu X, Huang W, Qian H (2018) Free fatty acid receptor 1 (FFAR1) as an emerging therapeutic target for type 2 diabetes mellitus: recent progress and prevailing challenges. Med Res Rev 38(2):381–425

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Liu C, Yang J, Zhou J, Ye Z, Feng D, Yue N, Tong J, Huang W, Qian H (2019) Design, synthesis and biological evaluation of novel FFA1/GPR40 agonists: new breakthrough in an old scaffold. Eur J Med Chem 1(179):608–622

    Article  Google Scholar 

  • Li Z, Zhou Z, Zhang L (2020) Current status of GPR40/FFAR1 modulators in medicinal chemistry (2016–2019): a patent review. Expert Opin Ther Pat 30(1):27–38

    Article  CAS  PubMed  Google Scholar 

  • Lin DC, Guo Q, Luo J, Zhang J, Nguyen K, Chen M, Tran T, Dransfield PJ, Brown SP, Houze J, Vimolratana M (2012) Identification and pharmacological characterization of multiple allosteric binding sites on the free fatty acid 1 receptor. Mol Pharmacol 82(5):843–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lionetti L, Mollica MP, Lombardi A, Cavaliere G, Gifuni G, Barletta A (2009) From chronic overnutrition to insulin resistance: the role of fat-storing capacity and inflammation. Nutr Metab Cardiovasc Dis 19(2):146–152

    Article  CAS  PubMed  Google Scholar 

  • Liou AP, Lu X, Sei Y, Zhao X, Pechhold S, Carrero RJ, Raybould HE, Wank S (2011) The G-protein—coupled receptor GPR40 directly mediates long-chain fatty acid—induced secretion of cholecystokinin. Gastroenterology 140(3):903–912

    Article  CAS  PubMed  Google Scholar 

  • Ma D, Tao B, Warashina S, Kotani S, Lu L, Kaplamadzhiev DB, Mori Y, Tonchev AB, Yamashima T (2007) Expression of free fatty acid receptor GPR40 in the central nervous system of adult monkeys. Neurosci Res 58(4):394–401

    Article  CAS  PubMed  Google Scholar 

  • MacDonald PE, El-Kholy W, Riedel MJ, Salapatek AM, Light PE, Wheeler MB (2002) The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. Diabetes 51(suppl 3):S434–S442

    Article  CAS  PubMed  Google Scholar 

  • Mancini AD, Poitout V (2013) The fatty acid receptor FFA1/GPR40 a decade later: how much do we know? Trends Endocrinol Metab 24(8):398–407

    Article  CAS  PubMed  Google Scholar 

  • Mancini AD, Poitout V (2015) GPR40 agonists for the treatment of type 2 diabetes: life after ‘TAKing’a hit. Diabetes Obes Metab 17(7):622–629

    Article  CAS  PubMed  Google Scholar 

  • Mancini AD, Bertrand G, Vivot K, Carpentier É, Tremblay C, Ghislain J, Bouvier M, Poitout V (2015) β-Arrestin recruitment and biased agonism at free fatty acid receptor 1. J Biol Chem 290(34):21131–21140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGarry JD (2002) Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 51(1):7–18

    Article  CAS  PubMed  Google Scholar 

  • Menon V, Lincoff AM, Nicholls SJ, Jasper S, Wolski K, McGuire DK, Mehta CR, Rosenstock J, Lopez C, Marcinak J, Cao C (2018) Fasiglifam-induced liver injury in patients with type 2 diabetes: results of a randomized controlled cardiovascular outcomes safety trial. Diabetes Care 41(12):2603–2609

    Article  CAS  PubMed  Google Scholar 

  • Mingrone G (2006) Dietary fatty acids and insulin secretion. Scand J Food Nutr 50(sup2):79–84

    Article  Google Scholar 

  • Nagasumi K, Esaki R, Iwachidow K, Yasuhara Y, Ogi K, Tanaka H, Nakata M, Yano T, Shimakawa K, Taketomi S, Takeuchi K (2009) Overexpression of GPR40 in pancreatic β-cells augments glucose-stimulated insulin secretion and improves glucose tolerance in normal and diabetic mice. Diabetes 58(5):1067–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamoto K, Nishinaka T, Matsumoto K, Kasuya F, Mankura M, Koyama Y, Tokuyama S (2012) Involvement of the long-chain fatty acid receptor GPR40 as a novel pain regulatory system. Brain Res 13(1432):74–83

    Article  Google Scholar 

  • news/2013/20131227_6117.html. Accessed 26 May 2016

  • Nolan CJ, Leahy JL, Delghingaro-Augusto V, Moibi J, Soni K, Peyot ML, Fortier M, Guay C, Lamontagne J, Barbeau A, Przybytkowski E (2006) Beta cell compensation for insulin resistance in Zucker fatty rats: increased lipolysis and fatty acid signalling. Diabetologia 49(9):2120–2130

    Article  CAS  PubMed  Google Scholar 

  • Oh YS, Bae GD, Baek DJ, Park EY, Jun HS (2018) Fatty acid-induced lipotoxicity in pancreatic beta-cells during development of type 2 diabetes. Front Endocrinol 16(9):384

    Article  Google Scholar 

  • Peng XV, Marcinak JF, Raanan MG, Cao C (2017) Combining the G-protein-coupled receptor 40 agonist fasiglifam with sitagliptin improves glycaemic control in patients with type 2 diabetes with or without metformin: a randomized, 12-week trial. Diabetes Obes Metab 19(8):1127–1134

    Article  CAS  PubMed  Google Scholar 

  • Perrini S, Ficarella R, Picardi E, Cignarelli A, Barbaro M, Nigro P, Peschechera A, Palumbo O, Carella M, De Fazio M, Natalicchio A (2013) Differences in gene expression and cytokine release profiles highlight the heterogeneity of distinct subsets of adipose tissue-derived stem cells in the subcutaneous and visceral adipose tissue in humans. PLoS ONE 8(3):e57892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prentki M (1996) New insights into pancreatic β-cell metabolic signaling in insulin secretion. Eur J Endocrinol 134(3):272–286

    Article  CAS  PubMed  Google Scholar 

  • Prentki M, Joly E, El-Assaad W, Roduit R (2002) Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: role in β-cell adaptation and failure in the etiology of diabetes. Diabetes 51(suppl 3):S405–S413

    Article  CAS  PubMed  Google Scholar 

  • Rhee JS, Betz A, Pyott S, Reim K, Varoqueaux F, Augustin I, Hesse D, Sudhof TC, Takahashi M, Rosenmund C, Brose N (2002) Beta phorbol ester-and diacylglycerol-induced augmentation of transmitter release is mediated by Munc13s and not by PKCs. Cell 108:121–133

    Article  CAS  PubMed  Google Scholar 

  • Rives ML, Rady B, Swanson N, Zhao S, Qi J, Arnoult E, Bakaj I, Mancini A, Breton B, Lee SP, Player MR (2018) GPR40-mediated Gα12 activation by allosteric full agonists highly efficacious at potentiating glucose-stimulated insulin secretion in human islets. Mol Pharmacol 93(6):581–591

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues DA, Pinheiro PD, Ferreira TT, Thota S, Fraga CA (2018) Structural basis for the agonist action at free fatty acid receptor 1 (FFA1R or GPR40). Chem Biol Drug Des 91(3):668–680

    Article  CAS  PubMed  Google Scholar 

  • Safavi M, Foroumadi A, Abdollahi M (2013) The importance of synthetic drugs for type 2 diabetes drug discovery. Expert Opin Drug Discov 8(11):1339–1363

    Article  CAS  PubMed  Google Scholar 

  • Sargsyan E, Ortsäter H, Thorn K, Bergsten P (2008) Diazoxide-induced β-cell rest reduces endoplasmic reticulum stress in lipotoxic β-cells. J Endocrinol 199(1):41–50

    Article  CAS  PubMed  Google Scholar 

  • Schmitz O, Rungby J, Edge L, Juhl CB (2008) On high-frequency insulin oscillations. Ageing Res Rev 7(4):301–305

    Article  CAS  PubMed  Google Scholar 

  • Sears B, Perry M (2015) The role of fatty acids in insulin resistance. Lipids Health Dis 14(1):1–9

    Article  Google Scholar 

  • Seino S, Seino M, Nishi S, Bell GI (1989) Structure of the human insulin receptor gene and characterization of its promoter. Proc Natl Acad Sci 86(1):114–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sener A, Malaisse WJ (1980) l-Leucine and a nonmetabolized analogue activate pancreatic islet glutamate dehydrogenase. Nature 288(5787):187–189

    Article  CAS  PubMed  Google Scholar 

  • Shapiro H, Shachar S, Sekler I, Hershfinkel M, Walker MD (2005) Role of GPR40 in fatty acid action on the β cell line INS-1E. Biochem Biophys Res Commun 335(1):97–104

    Article  CAS  PubMed  Google Scholar 

  • Steneberg P, Rubins N, Bartoov-Shifman R, Walker MD, Edlund H (2005) The FFA receptor GPR40 links hyperinsulinemia, hepatic steatosis, and impaired glucose homeostasis in mouse. Cell Metab 1(4):245–258

    Article  CAS  PubMed  Google Scholar 

  • Stoddart LA, Smith NJ, Milligan G, International Union of Pharmacology (2008) LXXI. Free fatty acid receptors FFA1,-2, and-3: pharmacology and pathophysiological functions. Pharmacol Rev 60(4):405–417

    Article  CAS  PubMed  Google Scholar 

  • Suckale J, Solimena M (2007) Pancreas islets in metabolic signaling-focus on the β-cell. Nat Preced 13:7156–7171

    Google Scholar 

  • Surgand JS, Rodrigo J, Kellenberger E, Rognan D (2006) A chemogenomic analysis of the transmembrane binding cavity of human G-protein-coupled receptors. Proteins Struct Funct Bioinform 62(2):509–538

    Article  CAS  Google Scholar 

  • Takano R, Yoshida M, Inoue M, Honda T, Nakashima R, Matsumoto K, Yano T, Ogata T, Watanabe N, Hirouchi M, Kimura T (2015) Optimization of 3-aryl-3-ethoxypropanoic acids and discovery of the potent GPR40 agonist DS-1558. Bioorg Med Chem 23(17):5546–5565

    Article  CAS  PubMed  Google Scholar 

  • Takeda Pharmaceutical Company Limited (2013) Osaka. https://www.takeda.com/

  • Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan W, Li P, Lu WJ, Watkins SM, Olefsky JM (2010) GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142(5):687–698

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka H, Yoshida S, Minoura H, Negoro K, Shimaya A, Shimokawa T, Shibasaki M (2014) Novel GPR40 agonist AS2575959 exhibits glucose metabolism improvement and synergistic effect with sitagliptin on insulin and incretin secretion. Life Sci 94(2):115–121

    Article  CAS  PubMed  Google Scholar 

  • Tang C, Ahmed K, Gille A, Lu S, Gröne HJ, Tunaru S, Offermanns S (2015) Loss of FFA2 and FFA3 increases insulin secretion and improves glucose tolerance in type 2 diabetes. Nat Med 21(2):173–177

    Article  CAS  PubMed  Google Scholar 

  • Tang-Christensen M, Larsen PJ, Thulesen J, Nielsen JR, Vrang N (2001) Glucagon-like peptide 2, a neurotransmitter with a newly discovered role in the regulation of food ingestion. Ugeskr Laeger 163(3):287–291

    CAS  PubMed  Google Scholar 

  • Tikhonova IG, Sum CS, Neumann S, Thomas CJ, Raaka BM, Costanzi S, Gershengorn MC (2007) Bidirectional, iterative approach to the structural delineation of the functional “chemoprint” in GPR40 for agonist recognition. J Med Chem 50(13):2981–2989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueno H, Ito R, Abe SI, Ookawara M, Miyashita H, Ogino H, Miyamoto Y, Yoshihara T, Kobayashi A, Tsujihata Y, Takeuchi K (2019) SCO-267, a GPR40 full agonist, improves glycemic and body weight control in rat models of diabetes and obesity. J Pharmacol Exp Ther 370(2):172–181

    Article  CAS  PubMed  Google Scholar 

  • Ullrich A, Bell JR, Chen EY, Herrera R, Petruzzelli LM, Dull TJ, Gray A, Coussens LL, Liao YC, Tsubokawa M, Mason A (1985) Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 313(6005):756–761

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Zhao Y, Gui B, Fu R, Ma F, Yu J, Qu P, Dong L, Chen C (2011) Acute stimulation of glucagon secretion by linoleic acid results from GPR40 activation and [Ca2+] i increase in pancreatic islet a-cells. J Endocrinol 210:173–179

    Article  CAS  PubMed  Google Scholar 

  • Waring MJ (2010) Lipophilicity in drug discovery. Expert Opin Drug Discov 5(3):235–248

    Article  CAS  PubMed  Google Scholar 

  • Wildman RP, Muntner P, Reynolds K, McGinn AP, Rajpathak S, Wylie-Rosett J, Sowers MR (2008) The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999–2004). Arch Intern Med 168(15):1617–1624

    Article  PubMed  Google Scholar 

  • Xiong Y, Swaminath G, Cao Q, Yang L, Guo Q, Salomonis H, Lu J, Houze JB, Dransfield PJ, Wang Y, Liu JJ (2013) Activation of FFA1 mediates GLP-1 secretion in mice. Evidence for allosterism at FFA1. Mol Cell Endocrinol 369(1–2):119–129

    Article  CAS  PubMed  Google Scholar 

  • Yabuki C, Komatsu H, Tsujihata Y, Maeda R, Ito R, Matsuda-Nagasumi K, Sakuma K, Miyawaki K, Kikuchi N, Takeuchi K, Habata Y (2013) A novel antidiabetic drug, fasiglifam/TAK-875, acts as an ago-allosteric modulator of FFAR1. PLoS ONE 8(10):e76280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yashiro H, Tsujihata Y, Takeuchi K, Hazama M, Johnson PR, Rorsman P (2012) The effects of TAK-875, a selective G protein-coupled receptor 40/free fatty acid 1 agonist, on insulin and glucagon secretion in isolated rat and human islets. J Pharmacol Exp Ther 340(2):483–489

    Article  CAS  PubMed  Google Scholar 

  • Zhou YP, Grill VE (1994) Long-term exposure of rat pancreatic islets to fatty acids inhibits glucose-induced insulin secretion and biosynthesis through a glucose fatty acid cycle. J Clin Investig 93(2):870–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The current article did not receive any funding.

Author information

Authors and Affiliations

Authors

Contributions

AA and TB: conceived the study and wrote the article; AS, SS, NS, and RK: chemical structure work; SC and CVDLC: editing; SB and AAH: data literature; SBU: proof read.

Corresponding author

Correspondence to Tapan Behl.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest statement.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All the authors have approved the manuscript for final publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, A., Behl, T., Sehgal, A. et al. Free fatty acid receptor 1: a ray of hope in the therapy of type 2 diabetes mellitus. Inflammopharmacol 29, 1625–1639 (2021). https://doi.org/10.1007/s10787-021-00879-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-021-00879-8

Keywords

Navigation