Skip to main content

Advertisement

Log in

The effect of alpha lipoic acid on the developmental competence of mouse isolated preantral follicles

  • Gonadal Physiology and Disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

This study was designed to investigate the effect of alpha-lipoic acid (ALA) on reactive oxygen species (ROS) production, total antioxidant capacity (TAC) and developmental competence of cultured pre-antral follicles derived from mouse ovarian tissue.

Methods

Pre-antral follicles were isolated from immature mouse ovaries and were cultured in α- minimal essential medium supplemented with different concentrations (0, 50, 100, 250 and 500 uM) of ALA. Follicular growth, oocyte maturation and embryo development were evaluated. Separately, ROS and TAC were measured after 0, 24, 48, 72 and 96 h of culture with spectrofluorometery and ferric reducing/antioxidant power (FRAP) assay, respectively.

Results

In the presence of 100 uM ALA, developmental rates of follicles, oocytes and embryos were significantly higher than other groups (p < 0.05). At 96 h after culture, a decrease in ROS and an increase in TAC were observed in ALA group compared to control group (p < 0.05).

Conclusion

ALA (100 uM) improves the in vitro development of follicles. This effect may be mediated by decreasing ROS concentration and increasing follicular TAC level during the culture period.‎‎‎

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abedelahi A, Salehnia M, Allameh AA. The effects of different concentrations of sodium selenite on the in vitro maturation of preantral follicles in serum-free and serum supplemented media. J Assist Reprod Genet. 2008;25(9–10):483–8. doi:10.1007/s10815-008-9252-z.

    Article  PubMed  CAS  Google Scholar 

  2. Abedelahi A, Salehnia M, Allameh AA, Davoodi D. Sodium selenite improves the in vitro follicular development by reducing the reactive oxygen species level and increasing the total antioxidant capacity and glutathione peroxide activity. Human Reprod (Oxford, England). 2010;25(4):977–85. doi:10.1093/humrep/deq002.

    Article  CAS  Google Scholar 

  3. Agarwal A, Allamaneni SS. Role of free radicals in female reproductive diseases and assisted reproduction. Reprod Biomed Online. 2004;9(3):338–47.

    Article  PubMed  CAS  Google Scholar 

  4. Agarwal A, Gupta S, Sharma R. Oxidative stress and its implications in female infertility - a clinician’s perspective. Reprod Biomed Online. 2005;11(5):641–50.

    Article  PubMed  CAS  Google Scholar 

  5. Agarwal A, Gupta S, Sikka S. The role of free radicals and antioxidants in reproduction. Curr Opin Obstet Gynecol. 2006;18(3):325–32.

    Article  PubMed  Google Scholar 

  6. Agarwal A, Said TM, Bedaiwy MA, Banerjee J, Alvarez JG. Oxidative stress in an assisted reproductive techniques setting. Fertil Steril. 2006;86(3):503–12.

    Article  PubMed  CAS  Google Scholar 

  7. Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril. 2003;79(4):829–43.

    Article  PubMed  Google Scholar 

  8. Akpinar D, Yargicoglu P, Derin N, Aliciguzel Y, Agar A. The effect of lipoic acid on antioxidant status and lipid peroxidation in rats exposed to chronic restraint stress. Physiol Res Academ Sci Bohemoslov. 2008;57(6):893–901.

    CAS  Google Scholar 

  9. Amudha G, Josephine A, Varalakshmi P. Role of lipoic acid in reducing the oxidative stress induced by cyclosporine A. Clin Chim Acta; Int J Clin Chem. 2006;372(1–2):134–9.

    Article  CAS  Google Scholar 

  10. Arivazhagan P, Thilakavathy T, Panneerselvam C. Antioxidant lipoate and tissue antioxidants in aged rats. J Nutr Biochem. 2000;11(3):122–7.

    Article  PubMed  CAS  Google Scholar 

  11. Azadbakht M, Valojerdi MR. Development of vitrified-warmed mouse embryos co-cultured with polarized or non-polarized uterine epithelial cells using sequential culture media. J Assist Reprod Genet. 2008;25(6):251–61. doi:10.1007/s10815-008-9231-4.

    Article  PubMed  Google Scholar 

  12. Bedaiwy MA, Falcone T, Mohamed MS, Aleem AA, Sharma RK, Worley SE, et al. Differential growth of human embryos in vitro: role of reactive oxygen species. Fertil Steril. 2004;82(3):593–600.

    Article  PubMed  CAS  Google Scholar 

  13. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem. 1996;239(1):70–6.

    Article  PubMed  CAS  Google Scholar 

  14. Bilska A, Wlodek L. Lipoic acid - the drug of the future? Pharmacol Rep. 2005;57(5):570–7.

    PubMed  CAS  Google Scholar 

  15. Blondin P, Coenen K, Sirard MA. The impact of reactive oxygen species on bovine sperm fertilizing ability and oocyte maturation. J Androl. 1997;18(4):454–60.

    PubMed  CAS  Google Scholar 

  16. Byun CH, Koh JM, Kim DK, Park SI, Lee KU, Kim GS. Alpha-lipoic acid inhibits TNF-alpha-induced apoptosis in human bone marrow stromal cells. J Bone Miner Res. 2005;20(7):1125–35.

    Article  PubMed  CAS  Google Scholar 

  17. Cakatay U. Pro-oxidant actions of alpha-lipoic acid and dihydrolipoic acid. Med hypotheses. 2006;66(1):110–7.

    Article  PubMed  CAS  Google Scholar 

  18. Combelles CM, Gupta S, Agarwal A. Could oxidative stress influence the in-vitro maturation of oocytes? Reprod Biomed Online. 2009;18(6):864–80.

    Article  PubMed  Google Scholar 

  19. Del Corso A, Cappiello M, Mura U. Thiol dependent oxidation of enzymes: the last chance against oxidative stress. Int J Biochem. 1994;26(6):745–50.

    Article  PubMed  Google Scholar 

  20. Downs SM, Mastropolo AM. The participation of energy substrates in the control of meiotic maturation in murine oocytes. Dev Biol. 1994;162(1):154–68.

    Article  PubMed  CAS  Google Scholar 

  21. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82(1):47–95.

    PubMed  CAS  Google Scholar 

  22. Engel RH, Evens AM. Oxidative stress and apoptosis: a new treatment paradigm in cancer. Front Biosci. 2006;11:300–12.

    Article  PubMed  CAS  Google Scholar 

  23. Freitas RM. The evaluation of effects of lipoic acid on the lipid peroxidation, nitrite formation and antioxidant enzymes in the hippocampus of rats after pilocarpine-induced seizures. Neurosci Lett. 2009;455(2):140–4.

    Article  PubMed  CAS  Google Scholar 

  24. Fujita H, Shiosaka M, Ogino T, Okimura Y, Utsumi T, Sato EF, et al. Alpha-lipoic acid suppresses 6-hydroxydopamine-induced ROS generation and apoptosis through the stimulation of glutathione synthesis but not by the expression of heme oxygenase-1. Brain Res. 2008;1206:1–12.

    Article  PubMed  CAS  Google Scholar 

  25. Goto Y, Noda Y, Narimoto K, Umaoka Y, Mori T. Oxidative stress on mouse embryo development in vitro. Free Radic Biol Med. 1992;13(1):47–53.

    Article  PubMed  CAS  Google Scholar 

  26. Haidari K, Salehnia M, Rezazadeh Valojerdi M. The effect of leukemia inhibitory factor and coculture on the in vitro maturation and ultrastructure of vitrified and nonvitrified isolated mouse preantral follicles. Fertil Steril. 2008;90(6):2389–97. doi:10.1016/j.fertnstert.2007.10.052.

    Article  PubMed  Google Scholar 

  27. Halliwell B, Gutteridge JM. Free radicals and antioxidant protection: mechanisms and significance in toxicology and disease. Hum Toxicol. 1988;7(1):7–13.

    Article  PubMed  CAS  Google Scholar 

  28. Harris S. Experimental and clinical investigation into mammalian oocyte metabolism, nutrition and fertility. Dissertation, University of Leeds; 2002.

  29. Johnson M, Freeman E, Gardner D, Hunt P. Oxidative metabolism of pyruvate is required for meiotic maturation of murine oocytes in vivo. 77, 2–8. Biol Reprod. 2007;77:2–8.

    Article  PubMed  CAS  Google Scholar 

  30. Kitagawa Y, Suzuki K, Yoneda A, Watanabe T. Effects of oxygen concentration and antioxidants on the in vitro developmental ability, production of reactive oxygen species (ROS), and DNA fragmentation in porcine embryos. Theriogenology. 2004;62(7):1186–97.

    Article  PubMed  CAS  Google Scholar 

  31. Laurent A, Nicco C, Chereau C, Goulvestre C, Alexandre J, Alves A, et al. Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res. 2005;65(3):948–56.

    PubMed  CAS  Google Scholar 

  32. LeBel CP, Ischiropoulos H, Bondy SC. Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol. 1992;5(2):227–31.

    Article  PubMed  CAS  Google Scholar 

  33. Li J, Foote RH, Simkin M. Development of rabbit zygotes cultured in protein-free medium with catalase, taurine, or superoxide dismutase. Biol Reprod. 1993;49(1):33–7.

    Article  PubMed  CAS  Google Scholar 

  34. Luvoni GC, Keskintepe L, Brackett BG. Improvement in bovine embryo production in vitro by glutathione-containing culture media. Mol Reprod Dev. 1996;43(4):437–43.

    Article  PubMed  CAS  Google Scholar 

  35. Marsh SA, Pat BK, Gobe GC, Coombes JS. Evidence for a non-antioxidant, dose-dependent role of alpha -lipoic acid in caspase-3 and ERK2 activation in endothelial cells. Apoptosis. 2005;10(3):657–65.

    Article  PubMed  CAS  Google Scholar 

  36. Moini H, Packer L, Saris NE. Antioxidant and prooxidant activities of alpha-lipoic acid and dihydrolipoic acid. Toxicol Appl Pharmacol. 2002;182(1):84–90.

    Article  PubMed  CAS  Google Scholar 

  37. Nasr-Esfahani MH, Johnson MH. How does transferrin overcome the in vitro block to development of the mouse preimplantation embryo? J Reprod Fertil. 1992;96(1):41–8.

    Article  PubMed  CAS  Google Scholar 

  38. Noda Y, Matsumoto H, Umaoka Y, Tatsumi K, Kishi J, Mori T. Involvement of superoxide radicals in the mouse two-cell block. Mol Reprod Dev. 1991;28(4):356–60.

    Article  PubMed  CAS  Google Scholar 

  39. Nonogaki T, Noda Y, Narimoto K, Umaoka Y, Mori T. Protection from oxidative stress by thioredoxin and superoxide dismutase of mouse embryos fertilized in vitro. Hum Reprod (Oxford, England). 1991;6(9):1305–10.

    CAS  Google Scholar 

  40. Oyawoye O, Abdel Gadir A, Garner A, Constantinovici N, Perrett C, Hardiman P. Antioxidants and reactive oxygen species in follicular fluid of women undergoing IVF: relationship to outcome. Hum Reprod (Oxford, England). 2003;18(11):2270–4.

    Article  CAS  Google Scholar 

  41. Packer L, Tritschler HJ, Wessel K. Neuroprotection by the metabolic antioxidant alpha-lipoic acid. Free Radic Biol Med. 1997;22(1–2):359–78.

    Article  PubMed  CAS  Google Scholar 

  42. Packer L, Witt EH, Tritschler HJ. Alpha-Lipoic acid as a biological antioxidant. Free Radic Biol Med. 1995;19(2):227–50.

    Article  PubMed  CAS  Google Scholar 

  43. Papas AM. Antioxidant status, diet, nutrition and health. New York: CRC Press; 1998. p. 133–210.

    Google Scholar 

  44. Pasqualotto EB, Agarwal A, Sharma RK, Izzo VM, Pinotti JA, Joshi NJ, et al. Effect of oxidative stress in follicular fluid on the outcome of assisted reproductive procedures. Fertil Steril. 2004;81(4):973–6.

    Article  PubMed  CAS  Google Scholar 

  45. Poli G, Leonarduzzi G, Biasi F, Chiarpotto E. Oxidative stress and cell signalling. Curr Med Chem. 2004;11:1163–82.

    PubMed  CAS  Google Scholar 

  46. Roy S, Terada M. Activities of glucose metabolic enzymes in human preantral follicles: in vitro modulation by follicle-stimulating hormone, luteinizing hormone, epidermal growth factor, insulin-like growth factor i, and transforming growth factor β1. Biol Reprod. 1999;60:763–8.

    Article  PubMed  CAS  Google Scholar 

  47. Gupta S, Sekhon L, Kim Y, Agarwal A. The role of oxidative stress and antioxidants in assisted reproduction. Women’s Health Rev. 2010;6:227–38.

    Article  CAS  Google Scholar 

  48. Simbula G, Columbano A, Ledda-Columbano GM, Sanna L, Deidda M, Diana A, et al. Increased ROS generation and p53 activation in alpha-lipoic acid-induced apoptosis of hepatoma cells. Apoptosis. 2007;12(1):113–23.

    Article  PubMed  CAS  Google Scholar 

  49. Tarin JJ, Vendrell FJ, Ten J, Blanes R, van Blerkom J, Cano A. The oxidizing agent tertiary butyl hydroperoxide induces disturbances in spindle organization, c-meiosis, and aneuploidy in mouse oocytes. Mol Hum Reprod. 1996;2(12):895–901.

    Article  PubMed  CAS  Google Scholar 

  50. Taylor C. Antioxidants and reactive oxygen species in infertility. Environ Toxical, Pharmaco. 2001;10:189–98.

    Article  CAS  Google Scholar 

  51. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84.

    Article  PubMed  CAS  Google Scholar 

  52. Vincent AM, McLean LL, Backus C, Feldman EL. Short-term hyperglycemia produces oxidative damage and apoptosis in neurons. FASEB J. 2005;19(6):638–40.

    PubMed  CAS  Google Scholar 

  53. Vincent AM, Stevens MJ, Backus C, McLean LL, Feldman EL. Cell culture modeling to test therapies against hyperglycemia-mediated oxidative stress and injury. Antioxid Redox Signal. 2005;7(11–12):1494–506.

    Article  PubMed  CAS  Google Scholar 

  54. Voloboueva LA, Liu J, Suh JH, Ames BN, Miller SS. (R)-alpha-lipoic acid protects retinal pigment epithelial cells from oxidative damage. Investig Ophthalmol Vis Sci. 2005;46(11):4302–10.

    Article  Google Scholar 

  55. Wenzel U, Nickel A, Daniel H. alpha-Lipoic acid induces apoptosis in human colon cancer cells by increasing mitochondrial respiration with a concomitant O2-*-generation. Apoptosis. 2005;10(2):359–68.

    Article  PubMed  CAS  Google Scholar 

  56. Wiener-Megnazi Z, Vardi L, Lissak A, Shnizer S, Reznick A, Ishai D, et al. Oxidative stress indices in follicular fluid as measured by the thermochemiluminescence assay correlate with outcome parameters in in vitro fertilization. Fertil Steril. 2004;82 Suppl 3:1171–6.

    Article  PubMed  CAS  Google Scholar 

  57. Yamasaki M, Kawabe A, Nishimoto K, Madhyastha H, Sakakibara Y, Suiko M, et al. Dihydro-alpha-lipoic acid has more potent cytotoxicity than alpha-lipoic acid. In Vitro Cell DevBiol-Animal. 2009;45:275–80.

    Article  CAS  Google Scholar 

  58. Yeoman RR, Williams LE, Abee CR. Low oxygen inhibits but complex high-glucose mediumfacilitates in vitro maturation of squirrel monkey oocyte-granulos a cell complexes. J Assist Reprod Genet. 1999;16:102–7.

    Article  PubMed  CAS  Google Scholar 

  59. Zembron-Lacny A, Slowinska-Lisowska M, Szygula Z, Witkowski K, Szyszka K. The comparison of antioxidant and hematological properties of N-acetylcysteine and alpha-lipoic acid in physically active males. Physiol Res Academ Sci Bohemoslov. 2009;58(6):855–61.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was conducted and funded by the biology school of Damghan University, Damghan, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Zavareh.

Additional information

Capsule

Alpha lipoic acid improved the developmental competence of preantral follicles in mice

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talebi, A., Zavareh, S., Kashani, M.H. et al. The effect of alpha lipoic acid on the developmental competence of mouse isolated preantral follicles. J Assist Reprod Genet 29, 175–183 (2012). https://doi.org/10.1007/s10815-011-9706-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-011-9706-6

Keywords

Navigation