Skip to main content
Log in

Power dissipation in clocking wires for clocked molecular quantum-dot cellular automata

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In the molecular quantum-dot cellular automata (QCA) paradigm clocking wires are used to produce an electric field which is perpendicular to the device plane of surface-bound molecules and is sinusoidally modulated in space and time. This clocking field guides the data flow through the molecular QCA array. Power is dissipated in clocking wires due to the non-zero resistance of the conductors. We analyze quantitatively the amount of power dissipated in the clocking wires and find that in the relevant parameter range it is fairly small. Dissipation in the molecular devices themselves will likely dominate the energy budget.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lent, C., Tougaw, P., Porod, W.: Appl. Phys. Lett. 62, 714 (1993)

    Article  Google Scholar 

  2. Lent, C., Tougaw, P., Porod, W., Bernstein, G.: Nanotechnology 4, 49 (1993)

    Article  Google Scholar 

  3. Lent, C., Tougaw, P.: In: Proc. IEEE, pp. 541–557. IEEE, New York (1997)

    Google Scholar 

  4. Orlov, A., Amlani, I., Bernstein, G., Lent, C., Snider, G.: Science 277, 928 (1997)

    Article  Google Scholar 

  5. Amlani, I., Orlov, A., Snider, G., Lent, C., Bernstein, G.: Appl. Phys. Lett. 72(17), 2719 (1998)

    Article  Google Scholar 

  6. Snider, G., Orlov, A., Amlani, I., Zuo, X., Bernstein, G., Lent, C., Merz, J., Porod, W.: J. Vac. Sci. Technol. A 17(4), 1394 (1999)

    Article  Google Scholar 

  7. Snider, G., Orlov, A., Amlani, I., Bernstein, G., Lent, C., Merz, J., Porod, W.: Microelectron. Eng. 47, 261 (1999)

    Article  Google Scholar 

  8. Snider, G., Orlov, A., Amlani, I., Zuo, X., Bernstein, G., Lent, C., Merz, J., Porod, W.: J. Appl. Phys. 85(8), 4283 (1999)

    Article  Google Scholar 

  9. Snider, G., Orlov, A., Amlani, I., Bernstein, G., Lent, C., Merz, J., Porod, W.: Jpn. J. Appl. Phys. B 38(12), 7227 (1999)

    Article  Google Scholar 

  10. Amlani, I., Orlov, A., Toth, G., Bernstein, G., Lent, C., Snider, G.: Science 284, 289 (1999)

    Article  Google Scholar 

  11. Amlani, I., Orlov, A., Toth, G., Lent, C., Bernstein, G., Snider, G.: Appl. Phys. Lett. 74, 2875 (1999)

    Article  Google Scholar 

  12. Kummamuru, R., Orlov, A., Timler, J., Ramasubramaniam, R., Lent, C., Bernstein, G., Snider, G.: In: Dev. Res. Conf., pp. 103–104 (2001)

  13. Orlov, A., Kummamuru, R., Ramasubramaniam, R., Lent, C., Bernstein, G., Snider, G.: J. Nanosci. Nanotechnol. 2, 351 (2002)

    Article  Google Scholar 

  14. Snider, G., Orlov, A., Kummamuru, R., Ramasubramaniam, R., Amlani, I., Bernstein, G., Lent, C., Merz, J., Porod, W.: In: Proc. IEEE-NANO, pp. 465–470. IEEE, New York (2001)

    Google Scholar 

  15. Orlov, A., Kummamuru, R., Ramasubramaniam, R., Toth, G., Lent, C., Bernstein, G., Snider, G.: Appl. Phys. Lett. 78(11), 1625 (2001)

    Article  Google Scholar 

  16. Amlani, I., Orlov, A., Kummamuru, R., Bernstein, G., Lent, C., Snider, G.: Appl. Phys. Lett. 77(5), 738 (2000)

    Article  Google Scholar 

  17. Orlov, A., Kummamuru, R., Ramasubramaniam, R., Lent, C., Bernstein, G., Snider, G.: In: Proc. IEEE-NANO. IEEE, New York (2001)

    Google Scholar 

  18. Orlov, A., Kummamuru, R., Ramasubramaniam, R., Lent, C., Bernstein, G., Snider, G.: In: Proc. SPIE, pp. 441–444. SPIE, Bellingham (2002)

    Chapter  Google Scholar 

  19. Orlov, A., Kummamuru, R., Ramasubramaniam, R., Lent, C., Bernstein, G., Snider, G.: Surf. Sci. 532, 1193 (2003)

    Article  Google Scholar 

  20. Kummamuru, R., Orlov, A., Ramasubramaniam, R., Bernstein, G., Lent, C., Lieberman, M., Felhner, T.: In: Int. Electron Dev. Meeting, pp. 95–98 (2002)

  21. Orlov, A., Amlani, I., Kummamuru, R., Ramasubramaniam, R., Toth, G., Lent, C., Bernstein, G., Snider, G.: Appl. Phys. Lett. 77, 295 (2000)

    Article  Google Scholar 

  22. Amlani, I., Orlov, A., Snider, G., Lent, C., Porod, W., Bernstein, G.: Superlattices Microstruct. 25(1/2) (1999)

  23. Snider, G., Orlov, A., Amlani, I., Bernstein, G., Lent, C., Merz, J., Porod, W.: Semicond. Sci. Technol. 13, A130 (1998)

    Article  Google Scholar 

  24. Snider, G., Orlov, A., Kummamuru, R., Ramasubramaniam, R., Bernstein, G., Lent, C., Lieberman, M., Felhner, T.: In: Proc. SPIE (2002)

  25. Orlov, A., Toth, G., Amlani, I., Cavin, R.K., Ramasubramaniam, R., Lent, C., Bernstein, G., Snider, G.: In: 58th Dev. Res. Conf., pp. 157–158 (2000)

  26. Yadavalli, K., Orlov, A., Timler, J., Lent, C., Snider, G.: Nanotechnology 18 (2007)

  27. Bernstein, G., Amlani, I., Orlov, A., Lent, C., Snider, G.: Nanotechnology 10, 166 (1999)

    Article  Google Scholar 

  28. Orlov, A., Amlani, I., Kummamuru, R., Rajagopal, R., Toth, G., Timler, J., Lent, C., Bernstein, G., Snider, G.: Appl. Phys. Lett. 81, 1332 (2002)

    Article  Google Scholar 

  29. Lieberman, M., Chellamma, S., Varughese, B., Wang, Y., Lent, C., Bernstein, G., Snider, G., Peiris, F.: Ann. N.Y. Acad. Sci. 960, 225 (2002)

    Article  Google Scholar 

  30. Lent, C., Isaksen, B., Lieberman, M.: J. Am. Chem. Soc. 125, 1056 (2003)

    Article  Google Scholar 

  31. Lent, C., Isaksen, B.: IEEE Trans. Electron Dev. 50, 1890 (2003)

    Article  Google Scholar 

  32. Lent, C.: Science 288(5471), 1597 (2000)

    Article  Google Scholar 

  33. Haider, M., Pitters, J., DiLabio, G., Livadaru, L., Mutus, J., Wolkow, R.: Phys. Rev. Lett. 102 (2009)

  34. Niemier, M., Kogge, P.M.: In: Int. Conf. Elec., Circ. Sys. (1999)

  35. Timler, J., Lent, C.: J. Appl. Phys. 91, 823 (2002)

    Article  Google Scholar 

  36. Hennessy, K., Lent, C.: J. Vac. Sci. Technol. 19, 1752 (2001)

    Google Scholar 

  37. Blair, E., Lent, C.: In: IEEE C Nanotechnol, pp. 402–405. IEEE, New York (2003)

    Google Scholar 

  38. Zhirnov, V., Cavin, R.: Nanotechnology 18, 298001 (2007)

    Article  Google Scholar 

  39. Tougaw, P., Lent, C.: J. Appl. Phys. 75, 1818 (1994)

    Article  Google Scholar 

  40. Lent, C., Tougaw, P.: J. Appl. Phys. 74, 6227 (1993)

    Article  Google Scholar 

  41. Niemier, M., Kogge, P.M.: Int. J. Circ. Theory Appl. 29, 49 (2001)

    Article  Google Scholar 

  42. Lent, C., Liu, M., Lu, Y.: Nanotechnology 17, 4240 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique P. Blair.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blair, E.P., Yost, E. & Lent, C.S. Power dissipation in clocking wires for clocked molecular quantum-dot cellular automata. J Comput Electron 9, 49–55 (2010). https://doi.org/10.1007/s10825-009-0304-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-009-0304-0

Navigation