Skip to main content
Log in

Effect of the pore shape on the thermal conductivity of porous media

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of the pore shape on the thermal conductivity of porous media is studied in this work, considering random and aligned distributions of spheroidal pores within the matrix. This is done by using the Bruggeman differential effective medium theory which is suitable for pores with different sizes, as is usually the case of practical interest. The obtained results can be applied for porous media with low as well as high porosities, and they show that: (1) the effect of the pore shape becomes stronger as the porosity increases. (2) The thermal conductivity for randomly oriented pores takes its maximum value for spherical pores and this value is the geometric average of the thermal conductivities along the three principal axes of the pores, when they are aligned. (3) In the case of aligned pores, the thermal conductivity along a principal axis increases with its length, in such a way that it is larger along the principal axis with longer dimensions. The predictions of the proposed approach are in good agreement with reported data and are expected to be useful to provide insights on the thermal behavior of porous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vafai K (2011) Porous media. Taylor & Francis group, Boca Raton, FL

    Google Scholar 

  2. Lu JM, Yan F, Texter J (2009) Prog Polym Sci 34:431

    Article  CAS  Google Scholar 

  3. Reschke V, Scheffler M (2012) J Mater Sci 47:5655. doi:10.1007/s10853-012-6359-5

    Article  CAS  Google Scholar 

  4. Dullien FAL (1991) Transp Porous Media 6:581

    Article  CAS  Google Scholar 

  5. Klemens PG, Gell M (1998) Mater Sci Eng A 245:143

    Article  Google Scholar 

  6. Lysenko V, Perichon S, Remaki B, Barbier D (2002) Sens Actuators A 99:13

    Article  Google Scholar 

  7. Hoinkis E (2004) Part Part Syst Charact 21:80

    Article  Google Scholar 

  8. Cho HJ, Sigmund EE, Song YQ (2012) Materials 5:590

    Article  Google Scholar 

  9. Kaviany M (1995) Principles of heat transfer in porous media. Springer-Verlag, New York

    Book  Google Scholar 

  10. Bussian AE (1983) Geophysics 48:1258

    Google Scholar 

  11. Glover PWJ, Hole MJ, Pous J (2000) Earth Planet Sci Lett 180:369

    Article  CAS  Google Scholar 

  12. Braginsky L, Shklover V, Hofmann H, Bowen P (2004) Phys Rev B 70:134201

    Article  Google Scholar 

  13. Maxwell JC (1873) Electricity and magnetism. Clarendon Press, Oxford

    Google Scholar 

  14. Milton GW (2002) The theory of composites. Cambridge University Press, Cambridge, NY

    Book  Google Scholar 

  15. Parrott JE, Stuckes AD (1975) Thermal conductivity of solids. Pion, London

    Google Scholar 

  16. Archie GE (1942) T Am I Min Met Eng 146:54

    Google Scholar 

  17. Schlichting KW, Padture NP, Klemens PG (2001) J Mater Sci 36:3003. doi:10.1023/A:1017970924312

    Article  CAS  Google Scholar 

  18. Chinh PD (2000) Geophysics 65:1093

    Google Scholar 

  19. Sen PN (1981) Geophysics 46:1714

    Google Scholar 

  20. Sen PN, Scala C, Cohen MH (1981) Geophysics 46:781

    Google Scholar 

  21. Neithalath N (2007) Cem Concr Res 37:796

    Article  CAS  Google Scholar 

  22. Neithalath N, Weiss J, Olek J (2006) Cem Concr Res 36:2074

    Article  CAS  Google Scholar 

  23. Glover PWJ, Pous J, Queralt P, Munoz JA, Liesa M, Hole MJ (2000) Earth Planet Sci Lett 178:59

    Article  CAS  Google Scholar 

  24. Mishina M (2009) Gondwana Res 16:563

    Article  Google Scholar 

  25. Gaillard F, Marziano GI (2005) J Geophys Res 110:138

    Article  Google Scholar 

  26. Munakata H, Yamamoto D, Kanamura K (2008) J Power Sources 178:596

    Article  CAS  Google Scholar 

  27. Lebovka NI, Bazhal MI, Vorobiev E (2002) J Food Eng 54:337

    Article  Google Scholar 

  28. Glover PWJ (2010) Geophysics 75:E247

    Google Scholar 

  29. Nan CW, Birringer R, Clarke DR, Gleiter H (1997) J Appl Phys 81:6692

    Article  CAS  Google Scholar 

  30. Bruggeman DAG (1935) Ann Phys 24:636

    Article  CAS  Google Scholar 

  31. Torquato S (2001) Random heterogeneous materials. Springer-Verlag, New York

    Google Scholar 

  32. Ordonez-Miranda J, Alvarado-Gil JJ, Medina-Ezquivel R (2010) Int J Thermophys 31:975

    Article  CAS  Google Scholar 

  33. Ordonez-Miranda J, Alvarado-Gil JJ (2012) Compos Sci Technol 11:044319

    Google Scholar 

  34. Jackson PD, Taylorsmith D, Stanford PN (1978) Geophysics 43:1250

    Google Scholar 

  35. Lysenko V, Perichon S, Remaki B, Barbier D, Champagnon B (1999) J Appl Phys 86:6841

    Article  CAS  Google Scholar 

  36. Braginsky L, Shklover V, Witz G, Bossmann HP (2007) Phys Rev B 75:094301

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ordonez-Miranda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ordonez-Miranda, J., Alvarado-Gil, J.J. Effect of the pore shape on the thermal conductivity of porous media. J Mater Sci 47, 6733–6740 (2012). https://doi.org/10.1007/s10853-012-6616-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6616-7

Keywords

Navigation