Skip to main content

Advertisement

Log in

Cross-Reactive Antibodies to Target Proteins are Dependent upon Oligomannose Glycosylated Epitopes in HTLV-1 Associated Neurological Disease

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Our lab recently identified a cross-reactive antibody response between human T-lymphotropic virus type-1-p24-(gag) (HTLV-1-p24-(gag)) and peroxiredoxin-1 (PrX-1) as potentially contributing to the pathogenesis of HTLV-1 associated neurological disease via molecular mimicry. These targets proteins were glycosylated, yet the glycan side chains immunoreactive with the immunoglobulins were unknown. Using a combination of lectin isolation and serial enzymatic deglycosylation of glycoproteins, we determined that the immunoreactive epitopes contained branched oligomannose side chains. These data suggest that post-translational glycosylation specifically related to oligomannose immunoreactivity to both the infecting and host antigens may contribute to molecular mimicry and be important in the pathogenesis of HTLV-1 associated neurological disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rudd PM, Elliott T, Cresswell P, Wilson IA, Dwek RA. Glycosylation and the immune system. Science. 2001;291:2370–6.

    Article  PubMed  CAS  Google Scholar 

  2. Varki A. Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature. 2007;446:1023–9.

    Article  PubMed  CAS  Google Scholar 

  3. Rachmilewitz J. Glycosylation: An intrinsic sign of “danger”. Self Nonself. 2010;1:250–4.

    PubMed  Google Scholar 

  4. Marth JD, Grewal PK. Mammalian glycosylation in immunity. Nat Rev Immunol. 2008;8:874–87.

    Article  PubMed  CAS  Google Scholar 

  5. Green RS, Stone EL, Tenno M, Lehtonen E, Farquhar MG, Marth JD. Mammalian N-glycan branching protects against innate immune self-recognition and inflammation in autoimmune disease pathogenesis. Immunity. 2007;27:308–20.

    Article  PubMed  CAS  Google Scholar 

  6. Lee S, Shin Y, Marler J, Levin MC. Post-translational glycosylation of target proteins implicate molecular mimicry in the pathogenesis of HTLV-1 associated neurological disease. J Neuroimmunol. 2008;204:140–8.

    Article  PubMed  CAS  Google Scholar 

  7. Lee S, Levin MC. Molecular mimicry in neurological disease: what is the evidence? Cell Mol Life Sci. 2008;65:1161–75.

    Article  PubMed  CAS  Google Scholar 

  8. Levin MC, Lee SM, Kalume F, Morcos Y, Dohan Jr FC, Hasty KA, Callaway JC, Zunt J, Desiderio D, Stuart JM. Autoimmunity due to molecular mimicry as a cause of neurological disease. Nat Med. 2002;8:509–13.

    Article  PubMed  CAS  Google Scholar 

  9. Lee SM, Morocos Y, Jang H, Stuart JM, Levin MC. HTLV-1 induced molecular mimicry in neurologic disease. In: Oldstone M, editor. Molecular Mimicry: Infection Inducing Autoimmune Disease. New York: Springer; 2005.

    Google Scholar 

  10. Yuki N. Ganglioside mimicry and peripheral nerve disease. Muscle Nerve. 2007;35:691–711.

    Article  PubMed  CAS  Google Scholar 

  11. Kirvan CA, Cox CJ, Swedo SE, Cunningham MW. Tubulin is a neuronal target of autoantibodies in Sydenham’s chorea. J Immunol. 2007;178:7412–21.

    PubMed  CAS  Google Scholar 

  12. Wucherpfennig K, Strominger J. Molecular Mimicry in T Cell-Mediated Autoimmunity: Viral Peptides Activate Human T Cell Clones Specific for Myelin Basic Protein. Cell. 1995;80:695–705.

    Article  PubMed  CAS  Google Scholar 

  13. Lang HL, Jacobsen H, Ikemizu S, Andersson C, Harlos K, Madsen L, Hjorth P, Sondergaard L, Svejgaard A, Wucherpfennig K, et al. A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat Immunol. 2002;3:940–3.

    Article  PubMed  CAS  Google Scholar 

  14. Rice JS, Kowal C, Volpe BT, DeGiorgio LA, Diamond B. Molecular mimicry: anti-DNA antibodies bind microbial and nonnucleic acid self-antigens. Curr Top Microbiol Immunol. 2005;296:137–51.

    Article  PubMed  CAS  Google Scholar 

  15. Oldstone MB. A suspenseful game of ‘hide and seek’ between virus and host. Nat Immunol. 2007;8:325–7.

    Article  PubMed  CAS  Google Scholar 

  16. Oldstone M. Molecular mimicry and immune mediated disease. FASEB J. 1998;12:1255–65.

    PubMed  CAS  Google Scholar 

  17. Fujinami RS, Oldstone MB. Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science. 1985;230:1043–5.

    Article  PubMed  CAS  Google Scholar 

  18. Kirvan CA, Swedo SE, Heuser JS, Cunningham MW. Mimicry and autoantibody-mediated neuronal cell signaling in Sydenham chorea. Nat Med. 2003;9:914–20.

    Article  PubMed  CAS  Google Scholar 

  19. Levin M, Lehky T, Flerlage N, Katz D, Kingma D, Jaffe E, Heiss J, Patronas N, McFarland H, Jacobson S. Immunopathogenesis of HTLV-1 associated neurologic disease based on a spinal cord biopsy from a patient with HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). New Eng J Med. 1997;336:839–45.

    Article  PubMed  CAS  Google Scholar 

  20. Levin MC, Jacobson S. HTLV-I associated myelopathy/tropical spastic paraparesis (HAM/TSP): a chronic progressive neurologic disease associated with immunologically mediated damage to the central nervous system. J Neurovirol. 1997;3:126–40.

    Article  PubMed  CAS  Google Scholar 

  21. Poeisz B, Ruscetti F, Gazdar A, Bunn P, Minna J, Gallo R. Detection and isolation of type Cretrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T cell lymphoma. Proc Natl Acad Sci. 1980;77:7415–9.

    Article  Google Scholar 

  22. Gessain A, Vernant J, Maurs L, Barin F, Gout O, Calender A. The, G.d. Antibodies to human T-lymphotropic virus I in patients with tropical spastic paraparesis. Lancet. 1985;2:407–10.

    Article  PubMed  CAS  Google Scholar 

  23. Osame M, Usuku K, Izumo S, Ijichi N, Amitani H, Igata A, Matsumoto M, Tara M. HTLV-I associated myelopathy, a new clinical entity. Lancet. 1986;1:1031–2.

    Article  PubMed  CAS  Google Scholar 

  24. Levin MC, Lee SM, Morcos Y, Brady J, Stuart J. Cross-reactivity between immunodominant human T lymphotropic virus type I tax and neurons: implications for molecular mimicry. J Infect Dis. 2002;186:1514–7.

    Article  PubMed  CAS  Google Scholar 

  25. Lee SM, Dunnavant FD, Jang H, Zunt J, Levin MC. Autoantibodies that recognize functional domains of hnRNPA1 implicate molecular mimicry in the pathogenesis of neurological disease. Neurosci Lett. 2006;401:188–93.

    Article  PubMed  CAS  Google Scholar 

  26. Kalume F, Lee SM, Morcos Y, Callaway JC, Levin MC. Molecular mimicry: cross-reactive antibodies from patients with immune-mediated neurologic disease inhibit neuronal firing. J Neurosci Res. 2004;77:82–9.

    Article  PubMed  CAS  Google Scholar 

  27. Lee S, Xu L, Shin Y, Gardner L, Hartzes A, Dohan FC, Raine C, Homayouni R, Levin MC. A potential link between autoimmunity and neurodegeneration in immune-mediated neurological disease. J Neuroimmunol. 2011;235:56–69.

    Article  PubMed  CAS  Google Scholar 

  28. De Castro-Costa CM, Araujo AQ, Barreto MM, Takayanagui OM, Sohler MP, da Silva EL, de Paula SM, Ishak R, Ribas JG, Rovirosa LC, et al. Proposal for diagnostic criteria of tropical spastic paraparesis/HTLV-I-associated myelopathy (TSP/HAM). AIDS Res Hum Retroviruses. 2006;22:931–5.

    Article  PubMed  Google Scholar 

  29. Levin M, Krichavsky M, Berk J, Foley S, Rosenfeld M, Dalmau J, Chen G, Posner J, Jacobson S. Neuronal molecular mimicry in immune mediated neurologic disease. Ann Neurol. 1998;44:87–98.

    Article  PubMed  CAS  Google Scholar 

  30. Cummings RD, Etzler ME. Antibodies and Lectins in Glycan Analysis. In. 2009.

  31. Lal R. Delineation of immunodominant epitopes of human T-lymphotropic virus types I and II and their usefulness in developing serologic assays for detection of antibodies to HTLV-1 and HTLV-II. J Acq Imm Def Syn and Human Retro. 1996;13:S170–8.

    Article  CAS  Google Scholar 

  32. Soldan SS, Graf MD, Waziri A, Flerlage AN, Robinson SM, Kawanishi T, Leist TP, Lehky TJ, Levin MC, Jacobson S. HTLV-I/II seroindeterminate Western blot reactivity in a cohort of patients with neurological disease. J Infect Dis. 1999;180:685–94.

    Article  PubMed  CAS  Google Scholar 

  33. Le Blanc I, Blot V, Bouchaert I, Salamero J, Goud B, Rosenberg AR, Dokhelar MC. Intracellular distribution of human T-cell leukemia virus type 1 Gag proteins is independent of interaction with intracellular membranes. J Virol. 2002;76:905–11.

    Article  PubMed  Google Scholar 

  34. Delamarre L, Rosenberg AR, Pique C, Pham D, Callebaut I, Dokhelar MC. The HTLV-I envelope glycoproteins: structure and functions. J Acquir Immune Defic Syndr Hum Retrovirol. 1996;13 Suppl 1:S85–91.

    Article  PubMed  CAS  Google Scholar 

  35. Bangham CR. The immune response to HTLV-I. Curr Opin Immunol. 2000;12:397–402.

    Article  PubMed  CAS  Google Scholar 

  36. Osame M. Pathological mechanisms of human T-cell lymphotropic virus type I-associated myelopathy (HAM/TSP). J Neurovirol. 2002;8:359–64.

    Article  PubMed  CAS  Google Scholar 

  37. Plummer Jr TH, Tarentino AL. Purification of the oligosaccharide-cleaving enzymes of Flavobacterium meningosepticum. Glycobiology. 1991;1:257–63.

    Article  PubMed  CAS  Google Scholar 

  38. Spiro RG. Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology. 2002;12:43R–56.

    Article  PubMed  CAS  Google Scholar 

  39. Hart GW, Housley MP, Slawson C. Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature. 2007;446:1017–22.

    Article  PubMed  CAS  Google Scholar 

  40. Hart GW, West CM. Nucleocytoplasmic Glycosylation. In. 2009.

  41. Crocker PR, Paulson JC, Varki A. Siglecs and their roles in the immune system. Nat Rev Immunol. 2007;7:255–66.

    Article  PubMed  CAS  Google Scholar 

  42. Izumo S, Umehara F, Osame M. HTLV-I-associated myelopathy. Neuropathology. 2000;20(Suppl):S65–8.

    Article  PubMed  Google Scholar 

  43. Jernigan M, Morcos Y, Lee SM, Dohan Jr FC, Raine C, Levin MC. IgG in brain correlates with clinicopathological damage in HTLV-1 associated neurologic disease. Neurology. 2003;60:1320–7.

    Article  PubMed  CAS  Google Scholar 

  44. Jacobson S, Shida H, McFarlin DE, Fauci AS, Koenig S. Circulating CD8+ cytotoxic T lymphocytes specific for HTLV-I pX in patients with HTLV-I associated neurological disease. Nature. 1990;348:245–8.

    Article  PubMed  CAS  Google Scholar 

  45. Lal RB, Giam C-Z, Coligan JE, Rudolph DL. Differential Immune Responsiveness to the Immunodominant Epitopes of Regulatory Proteins (tax and rex) in Human T Cell Lymphotropic Virus Type 1-Associated Myelopathy. J Infect Dis. 1994;169:496–503.

    Article  PubMed  CAS  Google Scholar 

  46. Goon PK, Hanon E, Igakura T, Tanaka Y, Weber JN, Taylor GP, Bangham CR. High frequencies of Th1-type CD4(+) T cells specific to HTLV-1 Env and Tax proteins in patients with HTLV-1-associated myelopathy/tropical spastic paraparesis. Blood. 2002;99:3335–41.

    Article  PubMed  CAS  Google Scholar 

  47. Jeffery KJ, Usuku K, Hall SE, Matsumoto W, Taylor GP, Procter J, Bunce M, Ogg GS, Welsh KI, Weber JN, et al. HLA alleles determine human T-lymphotropic virus-I (HTLV-I) proviral load and the risk of HTLV-I-associated myelopathy. Proc Natl Acad Sci U S A. 1999;96:3848–53.

    Article  PubMed  CAS  Google Scholar 

  48. Nagai M, Usuku K, Matsumoto W, Kodama D, Takenouchi N, Moritoyo T, Hashiguchi S, Ichinose M, Bangham CR, Izumo S, et al. Analysis of HTLV-1 proviral load in 202 HAM/TSP patients and 243 asymptomatic HTLV-1 carriers: high proviral load strongly predisposes to HAM/TSP. J Neurovirol. 1998;4:586–93.

    Article  PubMed  CAS  Google Scholar 

  49. DeGiorgio LA, Konstantinov KN, Lee SC, Hardin JA, Volpe BT, Diamond B. A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nat Med. 2001;7:1189–93.

    Article  PubMed  CAS  Google Scholar 

  50. Hemmer B, Gran B, Zhao Y, Marques A, Pascal J, Tzou A, Kondo T, Cortese I, Bielekova B, Straus S, et al. Identification of candidate T-cell epitopes and molecular mimics in chronic Lyme disease. Nature Medicine. 1999;5:1375–82.

    Article  PubMed  CAS  Google Scholar 

  51. Yuki N, Susuki K, Koga M, Nishimoto Y, Odaka M, Hirata K, Taguchi K, Miyatake T, Furukawa K, Kobata T, et al. Carbohydrate mimicry between human ganglioside GM1 and Campylobacter jejuni lipooligosaccharide causes Guillain-Barre syndrome. Proc Natl Acad Sci U S A. 2004;101:11404–9.

    Article  PubMed  CAS  Google Scholar 

  52. Yuki N. Infectious origins of, and molecular mimicry in, Guillain-Barre and Fisher syndromes. Lancet Infect Dis. 2001;1:29–37.

    Article  PubMed  CAS  Google Scholar 

  53. Nuti F, Peroni E, Real-Fernandez F, Bonache MA, Le Chevalier-Isaad A, Chelli M, Lubin-Germain N, Uziel J, Rovero P, Lolli F, et al. Posttranslationally modified peptides efficiently mimicking neoantigens: a challenge for theragnostics of autoimmune diseases. Biopolymers. 2010;94:791–9.

    Article  PubMed  CAS  Google Scholar 

  54. Marta CB, Oliver AR, Sweet RA, Pfeiffer SE, Ruddle NH. Pathogenic myelin oligodendrocyte glycoprotein antibodies recognize glycosylated epitopes and perturb oligodendrocyte physiology. Proc Natl Acad Sci U S A. 2005;102:13992–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is based upon work supported by the Office of Research and Development, Medical Research Service, Department of Veterans Affairs. This study was funded by a VA Merit Review Award (to MCL) and the Multiple Sclerosis Research Fund of the University of Tennessee Health Science Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Levin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Shin, Y., Clark, D. et al. Cross-Reactive Antibodies to Target Proteins are Dependent upon Oligomannose Glycosylated Epitopes in HTLV-1 Associated Neurological Disease. J Clin Immunol 32, 736–745 (2012). https://doi.org/10.1007/s10875-012-9652-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-012-9652-9

Keywords

Navigation