Skip to main content

Advertisement

Log in

Imaging Mass Spectrometry of a Coral Microbe Interaction with Fungi

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Fungal infections are increasing worldwide, including in the aquatic environment. Microbiota that coexist with marine life can provide protection against fungal infections by secretion of metabolites with antifungal properties. Our laboratory has developed mass spectrometric methodologies with the goal of improving our functional understanding of microbial metabolites and guiding the discovery process of anti-infective agents from natural sources. GA40, a Bacillus amyloliquefaciens strain isolated from an octocoral in Panama, displayed antifungal activity against various terrestrial and marine fungal strains. Using matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS), the molecular species produced by this microbe were visualized in a side-by-side interaction with two representative fungal strains, Aspergillus fumigatus and Aspergillus niger. The visualization was performed directly on the agar without the need for extraction. By evaluating the spatial distributions, relative intensities and m/z values of GA40 secreted metabolites in the fungal interactions and singly grown control colonies, we obtained insight into the antifungal activity of secreted metabolites. Annotation of GA40 metabolites observed in MALDI-IMS was facilitated by MS/MS networking analysis, a mass spectrometric technique that clusters metabolites with similar MS/MS fragmentation patterns. This analysis established that the predominant GA40 metabolites belong to the iturin family. In a fungal inhibition assay of A. fumigatus, the GA40 iturin metabolites were found to be responsible for the antifungal properties of this Bacillus strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alker AP, Smith GW, Kim K (2001) Characterization of Aspergillus sydowii, a fungal pathogen of Caribbean sea fan corals. Hydrobiologia 460:105–111

    Article  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Arguelles-Arias A, Ongena M, Halimi B, Lara Y, Brans A, Joris B, Fickers P (2009) Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb Cell Fact 8:63

    Article  PubMed  Google Scholar 

  • Balhara M, Ruil S, Dhankhar S, Chhillar AK (2011) Bioactive compounds hold up- Bacillus amyloliquefaciens as a potent bio-control agent. Nat Prod J 1:20–28

    CAS  Google Scholar 

  • Belofsky GN, Jensen PR, Fenical W (1999) Sansalvamide A: a new cytotoxic cyclic depsipeptide produced by a marine isolate of a fungus of the genus Fusarium. Tetrahedron Lett 40:2913–2916

    Article  CAS  Google Scholar 

  • Belofsky GN, Anguera M, Jensen PR, Fenical W, Köck M (2000) Oxepinamides A±C and Fumiquinazolines H± I: bioactive metabolites from a marine isolate of a fungus of the genus Acremonium. Chem Eur J 6:1355–1360

    Article  PubMed  CAS  Google Scholar 

  • Berger L, Speare R, Daszak P, Green DE, Cunningham AA (1998) Chytridiomycosis causes amphibian mortality associated with population declines in the rain forest of Australia and Central America. Proc Natl Acad Sci U S A 95:9031–9036

    Article  PubMed  CAS  Google Scholar 

  • Besson F, Peypoux F, Michel G, Delcambe L (1976) Characterization of iturin A in antibiotics from various strains of Bacillus subtilis. J Antibiot (Tokyo) 29:1043–1049

    Article  CAS  Google Scholar 

  • Besson F, Peypoux F, Quentin MJ, Michel G (1984) Action of antifungal peptidolipids from Bacillus subtilis on the cell membrane of Saccharomyces cerevisiae. J Antibiot (Tokyo) 37:172–177

    Article  CAS  Google Scholar 

  • Blehert DS, Hicks AC, Behr M, Meteyer CU, Berlowski-Zier BM, Buckles EL, Coleman JTH, Darling SR, Gargas A, Niver R, Okoniewski JC, Rudd RJ, Stone WB (2009) Bat white-nose syndrome: an emerging fungal pathogen? Science 323:227

    Article  PubMed  CAS  Google Scholar 

  • Bruno JF, Ellner SP, Vu I, Kim K, Harvell CD (2011) Impacts of aspergillosis on sea fan coral demography: modeling a moving target. Ecol Monogr 81:123–139

    Article  Google Scholar 

  • Falardeau J, Wise C, Novitsky L, Avis TJ (2013) Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens. J Chem Ecol, this issue

  • Favel D (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:A337–A359

    Article  Google Scholar 

  • Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2011) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194

    Article  Google Scholar 

  • Gardener BBM, Fravel DR (2002) Biological control of plant pathogens: research, commercialization, and application in the USA. Plant Health Prog. doi:10.1094/PHP-2002-0510-01-RV

    Google Scholar 

  • Garo E, Starks CM, Jensen PR, Fenical W, Lobkovsky E, Clardy J (2003) Trichodermamides A and B, cytotoxic modified dipeptides from the marine-derived fungus Trichoderma virens. J Nat Prod 66:423–426

    Article  PubMed  CAS  Google Scholar 

  • Golberg K, Eltzov E, Shnit-Orland M, Marks RS, Kushmaro A (2011) Characterization of quorum sensing signals in coral-associated bacteria. Microb Ecol 61:783–792

    Article  PubMed  Google Scholar 

  • Grovel O, Pouchus YF, Verbist J-F (2003) Accumulation of gliotoxin, a cytotoxic mycotoxinfrom Aspergillus fumigatus, in blue mussel (Mytilus edulis). Toxicon 42:297–300

    Article  PubMed  CAS  Google Scholar 

  • Gueldner RC, Reilly CC, Pusey PL, Costello CE, Arrendale RF, Cox RH, Himmelsbach DS, Crumley FG, Cutler HG (1988) Isolation and identification of iturins as antifungal peptides in biological control of peach brown rot with Bacillus subtilis. J Agric Food Chem 36:366–370

    Article  CAS  Google Scholar 

  • Harris RN, Brucker RM, Walke JB, Becker MH, Schwantes CR, Flaherty DC, Lam BA, Woodhams DC, Briggs CJ, Vredenburg VT, Minbiole KPC (2009) Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J 3:818–824

    Article  PubMed  CAS  Google Scholar 

  • Jensen PR, Gontang E, Mafnas C, Mincer TJ, Fenical W (2005) Culturable marine actinomycete diversity from tropical Pacific Ocean sediments. Environ Microbiol 7:1039–1048

    Article  PubMed  Google Scholar 

  • Jiang P, Zhang X, Xu X, He F, Qi S (2013) Diversity and chemical defense role of culturable non-actinobacterial bacteria isolated from the South China Sea gorgonians. J Microbiol Biotechnol 23:437–443

    Article  Google Scholar 

  • Kim K, Harvell CD (2004) The rise and fall of a six-year coral-fungal epizootic. Am Nat 164:S52–S63

    Article  PubMed  Google Scholar 

  • Kupherschmidt K (2012) Attack of the clones. Science 337:636–638

    Article  Google Scholar 

  • Latgé J-P (1999) Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev 12:310–350

    PubMed  Google Scholar 

  • Longcore JE, Pessier AP, Nichols DK (1999) Batrachochytrium dendrobatidis gen. etsp. nov., a chytrid pathogenic to amphibians. Mycologia 91:219–227

    Article  Google Scholar 

  • Lorch JM, Meteyer CU, Behr MJ, Boyles JG, Cryan PM, Hicks AC, Ballmann AE, Coleman JTH, Redell DN, Reeder DM, Blehert DS (2011) Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature 480:376–378

    Article  PubMed  CAS  Google Scholar 

  • Moree WJ, Phelan VV, Wu C-H, Bandeira N, Cornett DS, Duggan BM, Dorrestein PC (2012) Interkingdom metabolic transformations captured by microbial imaging mass spectrometry. Proc Natl Acad Sci U S A 109:13811–13816

    Article  PubMed  CAS  Google Scholar 

  • Nguyen DD, Wu C-H, Moree WJ, Lamsa A, Medema MH, Zhao X, Gavilan RG, Aparicio M, Atencio L, Jackson C, Ballesteros J, Sanchez J, Watrous JD, Phelan VV, van de Wiel C, Kersten RD, Mehnaz S, de Mot R, Shank EA, Charusanti P, Nagarajan H, Duggan BM, Moore BS, Bandeira N, Palsson BØ, Pogliano K, Gutiérrez M, Dorrestein PC (2013) MS/MS networking guided analysis of molecule and gene cluster families. Proc Natl Acad Sci USA. doi:10.1073/pnas.1303471110

  • Reshef L, Koren O, Loya Y, Zilber-Rosenberg I, Rosenberg E (2006) The coral probiotic hypothesis. Environ Microbiol 8:2068–2073

    Article  PubMed  CAS  Google Scholar 

  • Rypien KL, Ward JR, Azam F (2010) Antagonistic interactions among coral-associated Bacteria. Environ Microbiol 12:28–39

    Article  PubMed  CAS  Google Scholar 

  • Samson RA, Hoekstra ES, Frisvad JC, Filtenborg O (eds) (2002) Introduction to food- and airborne fungi, 6th edn. Centraalbureau voor schimmelcultures, Utrecht

    Google Scholar 

  • Sánchez JA (2001) Systematic of the southwestern Caribbean Muriceopsis Aurivillius (Cnidaria: Octocorallia), with the description of a new species. Bull Biol Soc Wash 10:160–180

    Google Scholar 

  • Sánchez JA (2007) A new genus of Atlantic octocorals (Octocoralia: gorgoniidae): Systematics of gorgoniids with asymmetric sclerites. J Nat Hist 41:493–509

    Article  Google Scholar 

  • Shnit-Orland M, Sivan A, Kushmaro A (2012) Antibacterial activity of Pseudoalteromonas in the coral holobiont. Microb Ecol 64:851–859

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  PubMed  CAS  Google Scholar 

  • Watrous JD, Dorrestein PC (2011) Imaging mass spectrometry in microbiology. Nat Rev Microbiol 9:683–694

    Article  PubMed  CAS  Google Scholar 

  • Watrous J, Roach P, Alexandrov T, Heath BS, Yang JY, Kersten RD, van der Voort M, Pogliano K, Gross H, Raaijmakers JM, Moore BS, Laskin J, Bandeira N, Dorrestein PC (2012) Mass spectral molecular networking of living microbial colonies. Proc Natl Acad Sci U S A 109:E1743–E1752

    Article  PubMed  CAS  Google Scholar 

  • Williams SM, Brodbelt JS (2004) MSn characterization of protonated cyclic peptides and metal complexes. J Am Soc Mass Spectrom 15:1039–1054

    Article  PubMed  CAS  Google Scholar 

  • Yang YL, Xu Y, Straight P, Dorrestein PC (2009) Translating metabolic exchange with imaging mass spectrometry. Nat Chem Biol 5:885–887

    Article  PubMed  CAS  Google Scholar 

  • Yang JY, Phelan VV, Simkovsky R, Watrous JD, Trial RM, Fleming TC, Wenter R, Moore BS, Golden SS, Pogliano K, Dorrestein PC (2012) A primer on agar-based microbial imaging mass spectrometry. J Bacteriol 194:6023–6028

    Article  PubMed  CAS  Google Scholar 

  • Yokota K, Yatsuda M, Miwa E, Higuchi K (2012) Comparative study on sample preparation methods for the HPLC quantification of iturin from culture supernatant of an antagonistic bacillus strain. J ISSAAS 18:70–75

    Google Scholar 

  • Zhang X, Sun Y, Bao J, He F, Xu X, Qi S (2012) Phylogenetic survey and antimicrobial activity of culturable microorganisms associated with the South China Sea black coral Antipathes dichotoma. FEMS Microbiol Lett 336:122–130

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Prof. W. Nierman lab (JCVI) and the Paul Jensen lab (SIO, UCSD) for donation of strains, and Dr. Hector M. Guzman for taxonomical identification of the coral. We acknowledge the Government of Panama (ANAM) for granting permission to make the collections of the coral. This work was supported by NIH AI095125 and S10RR029121, by the NIH Fogarty International Center International Cooperative Biodiversity Groups program TW006634, and by the Government of Panama SENACYT COL09-047 and COL08-061.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marcelino Gutiérrez or Pieter C. Dorrestein.

Additional information

Wilna J. Moree and Jane Y. Yang equal contribution.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 9.06 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moree, W.J., Yang, J.Y., Zhao, X. et al. Imaging Mass Spectrometry of a Coral Microbe Interaction with Fungi. J Chem Ecol 39, 1045–1054 (2013). https://doi.org/10.1007/s10886-013-0320-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-013-0320-1

Keywords

Navigation