Skip to main content

Advertisement

Log in

Primal or dual strong-duality in nonconvex optimization and a class of quasiconvex problems having zero duality gap

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Primal or dual strong-duality (or min-sup, inf-max duality) in nonconvex optimization is revisited in view of recent literature on the subject, establishing, in particular, new characterizations for the second case. This gives rise to a new class of quasiconvex problems having zero duality gap or closedness of images of vector mappings associated to those problems. Such conditions are described for the classes of linear fractional functions and that of quadratic ones. In addition, some applications to nonconvex quadratic optimization problems under a single inequality or equality constraint, are presented, providing new results for the fulfillment of zero duality gap or dual strong-duality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auslender, A.: Existence of optimal solutions and duality results under weak conditions. Math. Program. A 88, 45–59 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Auslender, A., Teboulle, M.: Asymptotic Cones and Functions in Optimization and Variational Inequalities. Springer, New York (2003)

    MATH  Google Scholar 

  3. Beck, A.: On the convexity of a class of quadratic mappings and its application to the problem of finding the smallest ball enclosing a given intersection of balls. J. Global Optim. 39, 113–126 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Borwein, J.M., Burachik, R., Yao, L.: Conditions for zero duality gap in convex programming. J. Convex Nonlinear Anal. 15, 167–190 (2014)

    MATH  MathSciNet  Google Scholar 

  5. Bot, R.I.: Conjugate Duality in Convex Optimization. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  6. Bot, R.I., Csetnek, E.R., Moldovan, A.: Revisiting some duality theorems via the quasirelative interior in convex optimization. J. Optim. Theory Appl. 139, 67–84 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bot, R.I., Csetnek, E.R., Wanka, G.: Regularity conditions via quasi-relative interior in convex programming. SIAM J. Optim. 19, 217–233 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bot, R.I., Grad, S.M., Wanka, G.: Fenchel’s duality theorem for nearly convex functions. J. Optim. Theory Appl. 132, 509–515 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bot, R.I., Kassay, G., Wanka, G.: Duality for almost convex optimization problems via the perturbation approach. J. Global Optim. 42, 385–399 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Brecker, W.W., Kassay, G.: A systematization of convexity concepts for sets and functions. J. Convex Anal. 4, 109–127 (1997)

    MATH  MathSciNet  Google Scholar 

  11. Burachik, R., Majeed, S.N.: Strong duality for generalized monotropic programming in infinite dimensions. J. Math. Anal. Appl. 400, 541–557 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Calabi, E.: Linear systems of real quadratic forms. Proc. Am. Math. Soc. 15, 844–846 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cárcamo, G.; Flores-Bazán, F.: Strong duality and KKT conditions in nonconvex optimization with a single equality constraint and geometric constraint. Math. Program. B, Published on 15 October 2016. 10.1007/s10107-016-1078-3

  14. Champion, T.: Duality gap in convex programming. Math. Program. A 99, 487–498 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Deng, S.: Coercivity properties and well posedness in vector optimization. RAIRO Oper. Res. 37, 195–208 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dines, L.L.: On the mapping of quadratic forms. Bull. Am. Math. Soc. 47, 494–498 (1941)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ernest, E., Volle, M.: Zero duality gap for convex programs: a generalization of the Clark–Duffin theorem. J. Optim. Theory Appl. 158, 668–686 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ernest, E., Volle, M.: Zero duality gap and attainment with possibly non-convex data. J. Convex Anal. 23, 615–629 (2016)

    MATH  MathSciNet  Google Scholar 

  19. Finsler, P.: Über das Vorkommen definiter und semi-definiter Formen in scharen quadratische Formen. Comment. Mat. Helv. 9, 188–192 (1937)

    Article  MATH  Google Scholar 

  20. Flores-Bazán, F.: Existence theory for finite-dimensional pseudomonotone equilibrium problems. Acta Appl. Math. 77, 249–297 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Flores-Bazán, F., Flores-Bazán, F., Vera, C.: A complete characterization of strong duality in nonconvex optimization with a single constraint. J. Global Optim. 53, 185–201 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Flores-Bazán, F., Flores-Bazán, F., Vera, C.: Gordan-type alternative theorems and vector optimization revisited. In: Ansari, Q.H., Yao, J.C. (eds.) Recent Developments in Vector Optimization, pp. 29–59. Springer, Berlin (2012)

    Chapter  Google Scholar 

  23. Flores-Bazán, F., Flores-Bazán, F., Vera, C.: Maximizing and minimizing quasiconvex functions: related properties, existence and optimality conditions via radial epiderivates. J. Global Optim. 63, 99–123 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  24. Flores-Bazán, F., Hadjisavvas, N., Lara, F., Montenegro, I.: First and second order asymptotic analysis with applications in quasiconvex optimization. J. Optim. Theory Appl. 170, 372–393 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  25. Flores-Bazán, F., Hadjisavvas, N., Vera, C.: An optimal alternative theorem and applications to mathematical programming. J. Global Optim. 37, 229–243 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Flores-Bazán, F., Jourani, A., Mastroeni, G.: On the convexity of the value function for a class of nonconvex variational problems: existence and optimality conditions. SIAM J. Control Optim. 52, 3673–3693 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  27. Flores-Bazán, F., Mastroeni, G.: Strong duality in cone constrained nonconvex optimization. SIAM J. Optim. 23, 153–169 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  28. Flores-Bazán, F., Mastroeni, G., Vera, C.: Proper or weak efficiency via saddle point conditions in cone constrained nonconvex vector optimization problems. Pre-print 2017-06, Departamento de Ingenieria Matematica, Universidad de Concepcion

  29. Flores-Bazán, F., Opazo, F.: Characterizing the convexity of joint-range for a pair of inhomogeneous quadratic functions and strong duality. Minimax Theory Appl. 1, 257–290 (2016)

    MATH  MathSciNet  Google Scholar 

  30. Flores-Bazán, F., Vera, C.: Unifying efficiency and weak efficiency in generalized quasiconvex vector minimization on the real-line. Int. J. Optim. Theory Methods Appl. 1, 247–265 (2009)

    MATH  MathSciNet  Google Scholar 

  31. Frenk, J.B.G., Kassay, G.: On classes of generalized convex functions. Gordan–Farkas type theorems, and Lagrangian duality. J. Optim. Theory Appl. 102, 315–343 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  32. Giannessi, F.: Constrained Optimization and Image Space Analysis. Springer, Berlin (2005)

    MATH  Google Scholar 

  33. Giannessi, F., Mastroeni, G.: Separation of sets and Wolfe duality. J. Global Optim. 42, 401–412 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  34. Goberna, M.A., López, M.A., Volle, M.: Primal attainment in convex infinite optimization duality. J. Convex Anal. 21, 1043–1064 (2014)

    MATH  MathSciNet  Google Scholar 

  35. Grad, A.: Quasi-relative interior-type constraint qualifications ensuring strong Lagrange duality for optimization problems with cone and affine constraints. J. Math. Anal. Appl. 361, 86–95 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  36. Hadjisavvas, N., Komlósi, S., Schaible, S. (eds.): Handbook of Generalized Convexity and Generalized Monotonicity. Springer, Berlin (2005)

    MATH  Google Scholar 

  37. Jeyakumar, V.: Constraint qualifications characterizing Lagrangian duality in convex optimization. J. Optim. Theory Appl. 136, 31–41 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  38. Jeyakumar, V., Lee, G.M.: Complete characterizations of stable Farkas lemma and cone-convex programming duality. Math. Program. A 114, 335–347 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  39. Jeyakumar, V., Li, G.Y.: Stable zero duality gaps in convex programming: complete dual characterizations with applications to semidefinite programs. J. Math. Anal. Appl. 360, 156–167 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  40. Jeyakumar, V., Oettli, W., Natividad, M.: A solvability theorem for a class of quasiconvex mappings with applications to optimization. J. Math. Anal. Appl. 179, 537–546 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  41. Jeyakumar, V.: Wolkowicz: zero duality gaps in infinite-dimensional programming. J. Optim. Theory Appl. 67, 87–108 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  42. Jeyakumar, V., Li, G.Y.: Trust-region problems with linear inequality constraints: exact SDP relaxation, global optimality and robust optimzation. Math. Program. A 147, 171–206 (2014)

    Article  MATH  Google Scholar 

  43. Kuroiwa, D.: Convexity for set-valued maps. Appl. Math. Lett. 9, 97–101 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  44. Mastroeni, G.: Some applications of the image space analysis to the duality theory for constrained extremum problems. J. Global Optim. 46, 603–614 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  45. Polyak, B.T.: Convexity of quadratic transformations and its use in control and optimization. J. Optim. Theory Appl. 99, 553–583 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  46. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  47. Rockafellar, R.T.: Conjugate Duality and Optimization. SIAM, New Delhi (1974)

    Book  MATH  Google Scholar 

  48. Tanaka, T.: General quasiconvexities, cones saddle points and minimax theorem for vector-valued functions. J. Optim. Theory Appl. 81, 355–377 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  49. Tseng, P.: Some convex programs without a duality gap. Math. Program. B 116, 553–578 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  50. Xia, Y., Wang, S., Sheu, R.L.: S-lemma with equality and its applications. Math. Program. A 156, 513–547 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  51. Zǎlinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The research for the first author was supported by the Programa Nacional de Innovación para la Competitividad y Productividad (Innóvate Perú), under contract 013-INNOVATEPERU-ECIP-2016, and was carried out partially while he was visiting IMCA-UNI during 2016. He is grateful for the hospitality of its members. The research material of this work was also supported in part by FONDECYT 115-0973 (Chile) and Basal project, CMM, Universidad de Chile, for the first author; whereas the fourth author was supported by FONDECYT 182-2015 (Perú), and part of his research was carried out while visited University of Concepcion. The authors want to express their gratitude to the referee for his/her careful reading of the manuscript and criticism, which were taken into account in the present version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabián Flores-Bazán.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores-Bazán, F., Echegaray, W., Flores-Bazán, F. et al. Primal or dual strong-duality in nonconvex optimization and a class of quasiconvex problems having zero duality gap. J Glob Optim 69, 823–845 (2017). https://doi.org/10.1007/s10898-017-0542-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-017-0542-9

Keywords

Mathematics Subject Classification

Navigation