Skip to main content
Log in

Predicting slow relaxation timescales in open quantum systems

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Molecules in open systems may be modeled using so-called reduced descriptions that keep focus on the molecule while including the effects of the environment. Mathematically, the matrices governing the Markovian equations of motion for the reduced density matrix, such as the Lindblad and Redfield equations, belong to the family of non-normal matrices. Tools for predicting the behavior of normal matrices (e.g., eigenvalue decompositions) are inadequate for describing the qualitative dynamics of systems governed by non-normal matrices. For example, such a system may relax to equilibrium on timescales much longer than expected from the eigenvalues. In this paper we contrast normal and non-normal matrices, expose mathematical tools for analyzing non-normal matrices, and apply these tools to a representative example system. We show how these tools may be used to predict dissipation timescales at both intermediate and asymptotic times, and we compare these tools to the conventional eigenvalue analyses. Interactions between the molecule and the environment, while generally resulting in dissipation on long timescales, can directly induce transient or even amplified behavior on short and intermediate timescales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.H. Al-Mohy, N.J. Higham, Computing the action of the matrix exponential, with an application to exponential integrators. SIAM J. Sci. Comput. 33(2), 488–511 (2011). https://doi.org/10.1137/100788860

    Article  Google Scholar 

  2. A. Ben-Israel, Linear equations and inequalities on a finite dimensional, real or complex, vector space: a unified theory. J. Math. Anal. Appl. 27, 367–389 (1969). https://doi.org/10.1016/0022-247X(69)90054-7

    Article  Google Scholar 

  3. K. Blum, Density Matrix Theory and Applications, 3rd edn. (Springer, Heldelberg, 2012)

    Book  Google Scholar 

  4. H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)

    Google Scholar 

  5. L. Chen, T. Hansen, I. Franco, Simple and accurate method for time-dependent transport along nanoscale junctions. J. Phys. Chem. C 118(34), 20009–20017 (2014)

    Article  CAS  Google Scholar 

  6. E.S. Coakley, V. Rokhlin, A fast divide-and-conquer algorithm for computing the spectra of real symmetric tridiagonal matrices. Appl. Comput. Harmon. Anal. 34(3), 379–414 (2013). https://doi.org/10.1016/j.acha.2012.06.003

    Article  Google Scholar 

  7. G.S. Engel, T.R. Calhoun, E.L. Read, T.K. Ahn, T. Mančal, Y.C. Cheng, R.E. Blankenship, G.R. Fleming, Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007)

    Article  CAS  Google Scholar 

  8. G.H. Golub, C.F. Van Loan, Matrix Computations, 4th edn. (The Johns Hopkins University Press, Baltimore, 2012)

    Google Scholar 

  9. V. Gorini, A. Kossakowski, E.C.G. Sudarshan, Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17(5), 821–825 (1976). https://doi.org/10.1063/1.522979

    Article  Google Scholar 

  10. R.A. Horn, C.R. Johnson, Topics in Matrix Analysis (Cambridge University Press, Cambridge, 1991)

    Book  Google Scholar 

  11. A. Iserles, S. MacNamara, Applications of magnus expansions and pseudospectra to markov processes. Eur. J. Appl. Math. 30(2), 400–425 (2019). https://doi.org/10.1017/S0956792518000177

    Article  Google Scholar 

  12. J.M. Jean, R.A. Friesner, G.R. Fleming, Application of a multilevel redfield theory to electron transfer in condensed phases. J. Chem. Phys. 96(8), 5827–5842 (1992). https://doi.org/10.1063/1.462858

    Article  CAS  Google Scholar 

  13. D. Krejčřík, P. Siegl, M. Tater, J. Viola, Pseudospectra in non-Hermitian quantum mechanics. J. Math. Phys. 56(10), 103513 (2015). https://doi.org/10.1063/1.4934378

    Article  Google Scholar 

  14. G. Lindblad, On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48(2), 119–130 (1976). https://doi.org/10.1007/BF01608499

    Article  Google Scholar 

  15. K.G. Makris, L. Ge, H.E. Türeci, Anomalous transient amplification of waves in non-normal photonic media. Phys. Rev. X 4, 041044 (2014). https://doi.org/10.1103/PhysRevX.4.041044

    Article  CAS  Google Scholar 

  16. C. Moler, C. Van Loan, Nineteen dubious ways to compute the exponential of a matrix. Twenty-five years later. SIAM Rev. 45(1), 3–49 (2003). https://doi.org/10.1137/S00361445024180

    Article  Google Scholar 

  17. A. Nitzan, Chemical Dynamics in Condensed Phases (Oxford University Press, Oxford, 2006)

    Book  Google Scholar 

  18. M.B. Plenio, J. Almeida, S.F. Huelga, Origin of long-lived oscillations in 2d-spectra of a quantum vibronic model: electronic versus vibrational coherence. J. Chem. Phys. 139(23), 235102 (2013). https://doi.org/10.1063/1.4846275

    Article  CAS  PubMed  Google Scholar 

  19. M.G. Reuter, Associating the invariant subspaces of a non-normal matrix with transient effects in its matrix exponential or matrix powers. (2019). http://arxiv.org/abs/1909.05931

  20. E. Thyrhaug, R. Tempelaar, M.J.P. Alcocer, K. Žídek, D. Bína, J. Knoester, T.L.C. Jansen, D. Zigmantas, Identification and characterization of diverse coherences in the Fenna–Matthews–Olson complex. Nat. Chem. 10, 780–786 (2018)

    Article  CAS  Google Scholar 

  21. L.N. Trefethen, M. Embree, Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators (Princeton University Press, Princeton, 2005)

    Book  Google Scholar 

  22. L.N. Trefethen, A.E. Trefethen, S.C. Reddy, T.A. Driscoll, Hydrodynamic stability without eigenvalues. Science 261(5121), 578–584 (1993). https://doi.org/10.1126/science.261.5121.578

    Article  CAS  PubMed  Google Scholar 

  23. T. Zelovich, L. Kronik, O. Hod, State representation approach for atomistic time-dependent transport calculations in molecular junctions. J. Chem. Theory Comput. 10(8), 2927–2941 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

F.P. and T.H. thank the Lundbeck Foundation for generous financial support. M.G.R. was supported by startup funds from the Institute for Advanced Computational Science at Stony Brook University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Hansen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poulsen, F., Hansen, T. & Reuter, M.G. Predicting slow relaxation timescales in open quantum systems. J Math Chem 60, 1542–1554 (2022). https://doi.org/10.1007/s10910-022-01367-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-022-01367-2

Keywords

Navigation