Skip to main content
Log in

A Comparative Study Between Technological Properties of Cashew Tree Gum and Arabic Gum

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Arabic gum (AG) is the most common emulsifier used for beverage emulsions. Cashew tree gum (CG) is a biological macromolecule that has been proposed as a substitute for the AG, although their technological properties comparison is still necessary. The aim of this study was to evaluate an isolation method for CG, and then evaluate CG technological properties in comparison to AG. The CG isolation methodology was improved using a small solvent amount. CG zeta-potential ranged from +8.0 mV (pH 2) to −9.7 mV (pH 5), while the electric charge in solution of AG ranged from −2.7 mV (pH 2) to −28.6 mV (pH 6). As compared to AG, the CG showed a 50 % higher swelling, a 36 % lower oil absorption capacity, a slightly lower (4–8 %) solubility and lower consistency. CG is a feasible polyelectrolyte, promotes lower consistency solutions, and exhibits good swelling property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lima RSN, Lima JR, Salis CR, Moreira RA (2002) Biotechnol Appl Biochem 35:45

    Article  Google Scholar 

  2. Yadav MP, Johnston DB, Hotchkiss AT Jr, Hicks KB (2007) Food Hydrocoll 21:1022

    Article  CAS  Google Scholar 

  3. Leathers TD, Nunnally MS, Côté GL (2009) Biotechnol Lett 31:289

    Article  CAS  Google Scholar 

  4. BeMiller JN, Huber KC (2008) Carbohydrates. In: Damodaran S, Parkin KL, Fennema OR (eds) Fennnema’s food chemistry, 4th edn. CRC Press, Boca Raton, pp 83–154

    Google Scholar 

  5. Nussinovitch A (2010). In: Nussinovitch A (ed.) Plant gum exudates of the world, 1st edition, CRC Press, Boca Raton, p 427

  6. Sarubbo LA, Campos-Takaki GM, Porto ALF, Tambourgi EB, Oliveira LA (2007) Exacta 5:145

    Article  Google Scholar 

  7. Magalhães GA Jr, Santos CMW, Silva DA, Maciel JS, Feitosa JPA, Paula HCB, Paula RCM (2009) Carbohydr Polym 77:217

    Article  Google Scholar 

  8. Oliveira JD, Silva DA, Paula RCM, Feitosa JPA, Paula HCB (2001) Int J Biol Macromol 29:35

    Article  CAS  Google Scholar 

  9. Paula RCM, Rodrigues JF (1995) Carbohydr Polym 26:177

    Article  Google Scholar 

  10. Pinto GL, Alvarez S, Martínez M, Rojas A, Leal E (1993) Carbohydr Res 239:257

    Article  Google Scholar 

  11. Rodrigues JF, Paula RCM, Costa SMO (1993) Polim Cienc Tecnol 3:31

    CAS  Google Scholar 

  12. Sarubbo LA, Oliveira LA, Porto ALF, Campos-Takaki GM, Tambourgi EB (2004) Braz Arch Biol Technol 47:685

    Article  CAS  Google Scholar 

  13. Silva DA, Maciel JS, Feitosa JPA, Paula HCB, Paula RCM (2010) J Mater Sci 45:5605

    Article  CAS  Google Scholar 

  14. Oliveira MA, Maia GA, Figueiredo RW, Souza ACR, Brito ES, Azeredo HMC (2009) Int J Food Sci Technol 44:641

    Article  Google Scholar 

  15. Paula RCM, Heatley F, Budd PM (1998) Polym Int 45:27

    Article  Google Scholar 

  16. Paula HCB, Oliveira EF, Abreu FOMS, Paula RCM, Morais SM, Forte MMC (2010) Polimer 20:112

    Google Scholar 

  17. Paula HCB, Sombra FM, Cavalcante RF, Abreu FOMS, Paula RCM (2011) Mater Sci Eng C 31:173–178

    Article  CAS  Google Scholar 

  18. Torquato DS, Ferreira ML, Sá GC, Brito ES, Pinto GAS (2004) World J Microbiol Biotechnol 20:505–507

    Article  CAS  Google Scholar 

  19. AOAC (2006) AOAC official method 2001.11 Protein (crude) in animal feed forage (plant tissue), grain and oilseeds. In: Horwitz W, Latimer GW Jr (eds) Official methods of analysis of association of official agricultural chemists. Maryland, AOAC international, pp 33–36

    Google Scholar 

  20. Wrosta RA, Acree TE, Decker EA, Penner MH, Reid DS, Schwartz SJ, Shoemaker CF, Smith D, Sporns P (2005) Lipid composition. In: Wrosta RA, Acree TE, Decker EA, Penner MH, Reid DS, Schwartz SJ, Shoemaker CF, Smith D, Sporns P (eds) Handbook of food analytical chemistry. John Wiley & Sons Inc, New Jersey, pp 423–511

    Google Scholar 

  21. Park YW (2004) In: Nollet LML (ed) Handbook of food analysis. Marcel Decker Inc, New York, pp 59–82

    Google Scholar 

  22. Betancur-Ancona D, López-Luna J, Chel-Guerrero L (2002) Food Chem 82:217–225

    Article  Google Scholar 

  23. Mirhosseini H, Amid BT (2012) Molecules 17:6465

    Article  CAS  Google Scholar 

  24. Pinto GL, Martínez M, Mendoza JA, Ocando E, Rivas C (1995) Biochem Syst Ecol 23:151

    Article  Google Scholar 

  25. Anderson DMW, Bell PC, Millar JRA (1974) Phytochemistry 13:2189

    Article  CAS  Google Scholar 

  26. Porto BC, Cristianini M (2014) LWT-Food Sci Technol 59:1325

  27. Al-Assaf S, Sakata M, McKenna C, Aoki H, Phillips GO (2009) Struct Chem 20:325

    Article  CAS  Google Scholar 

  28. Klassen DR, Nickerson MT (2012) Food Res Int 46:167

    Article  CAS  Google Scholar 

  29. Mothé CG, Rao MA (1999) Food Hydrocoll 13:501

    Article  Google Scholar 

  30. Toğrul H, Arslan N (2003) Carbohydr Polym 54:73

    Article  Google Scholar 

  31. Augusto PED, Falguera V, Cristianini M, Ibarz A (2011) Int J Food Sci Technol 46:1086

    Article  Google Scholar 

  32. Simas-Tosin FF, Barraza RR, Petkowiicz CLO, Silveira JLM, Sassaki GL, Santos EMR, Gorin PAJ, Iacomini M (2010) Food Hydrocoll 24:486

    Article  CAS  Google Scholar 

  33. Amid BT, Mirhosseini H (2012) Food Chem 132:1258–1268

    Article  CAS  Google Scholar 

  34. Gorji EG, Mohammadifar MA, Ezzatpanah H (2011) Int J Dairy Technol 64:262

    Article  CAS  Google Scholar 

  35. Sciarini LS, Maldonado PD, Ribotta PD, Pérez AE, León AE (2009) Food Hydrocoll 23:306

    Article  CAS  Google Scholar 

  36. Bresolin TMB, Milas M, Rinaudo M, Ganter JLMS (1998) Int J Biol Macromol 23:263

    Article  CAS  Google Scholar 

  37. Finley JW, Soto-Vaka A, Heimbach J, Rao TP, Juneja LR, Slavin J, Fahey GC (2013) J Agric Food Chem 61:1756

    Article  CAS  Google Scholar 

  38. Aoki H, Katayama T, Ogasawara T, Sasaki Y, Al-Assaf S, Phillips GO (2007) Food Hydrocoll 21:353

    Article  CAS  Google Scholar 

  39. Galla NR, Dubasi GR (2010) Food Hydrocoll 24:479

    Article  CAS  Google Scholar 

  40. Kinsella JE (1976) Crit Rev Food Sci Nutr 4:219–280

    Article  Google Scholar 

  41. Lazos ES (1992) Plant Foods Hum Nutr 42:257

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the São Paulo Research Foundation (FAPESP) for funding project Grant # 2011/22858-1, and the Brazilian National Research Council (CNPq) for the BC Porto scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruna Castro Porto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porto, B.C., Augusto, P.E.D. & Cristianini, M. A Comparative Study Between Technological Properties of Cashew Tree Gum and Arabic Gum. J Polym Environ 23, 392–399 (2015). https://doi.org/10.1007/s10924-014-0698-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-014-0698-z

Keywords

Navigation