Skip to main content

Advertisement

Log in

Climate and hydrologic controls on late Holocene sediment supply to an Amazon floodplain lake

  • original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Organic and inorganic geochemical analyses on sediments from Preto Lake, a central Amazon basin floodplain water body, were used to document hydrological changes of the Solimões River during the late Holocene. Between 3600 and 400 cal yr BP, Preto Lake received smectite-rich sediment from the Solimões River, with high concentrations of Al (~ 53 × 103 ppm) and Si (~ 210 × 103 ppm). The high detrital input suggests there was a direct connection between Preto Lake and the main river channel. High river inflow maintained lake stage and was responsible for the contribution to sediments of phytoplankton-derived organic matter. Low sediment organic carbon concentrations characterized this period (mean ~ 3.8 wt%), probably because of dilution by river-borne lithogenic matter. Although the river inputs remained high, abrupt increases in TOC content around 1800 and 1200 cal yr BP suggest brief increases in fluvial nutrient supply to Preto Lake. During the last 400 cal yr, substantial declines in smectite (mean 40%), Al (~ 29 × 103 ppm) and Si (138 × 103 ppm) suggest the establishment of a semi-isolated lake, with reduced river inflow. A large proportion of C3-plant-derived organic matter, supplied by runoff from the kaolinite-rich watershed, was observed during this period, and was accompanied by high autochthonous primary production, driven by development of an aquatic macrophyte community. This change in sediment organic matter source accounted for the greater TOC content (~ 20%) of sediments deposited during this period. Although Holocene climate change was an important control on fluvial sediment supply to upper and lower Amazon Basin floodplain lakes, sedimentation processes in Preto Lake can also be linked to changes in the river’s course. The transition to a semi-isolated lake could have been a consequence of lateral and vertical sediment accretion, which formed a natural levee that blocked fluvial input to Preto Lake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aalto R, Maurice-Bourgoin L, Dunne T, Montgomery DR, Nittrouer CA, Guyot JL (2003) Episodic sediment accumulation on Amazonian flood plains influenced by El Ninõ/Southern oscillation. Nature 425:493–497

    Google Scholar 

  • Absy ML (1979) A palynological study of Holocene sediments in the Amazon basin. PhD thesis, University of Amsterdam, Holland, p 86

  • Amorim MA (2010) Sedimentação e acúmulo de carbono durante o Holoceno em um Sistema de Várzeas da Amazônia: Várzea do Lago Grande do Curuai, Pará, Brasil. PhD thesis, Universidade Federal Fluminense, Brazil, p 272

  • Aniceto K, Moreira-Turcq P, Cordeiro RC, Fraizy P, Quintana I, Turcq B (2014) Holocene paleohydrology of Quistococha Lake (Peru) in the upper Amazon Basin: influence on carbon accumulation. Palaeogeogr Palaeoclimatol Palaeoecol 415:165–174

    Google Scholar 

  • Baker PA, Seltzer GO, Fritz SC, Dunbar RB, Grove MJ, Tapia PM, Cross SL, Rowe HD, Broda JP (2001) The history of South American tropical precipitation for the past 25,000 years. Science 291:640–643

    Google Scholar 

  • Behling H (2002) Carbon storage increases by major forest ecosystems in tropical South America since the last glacial maximum and the early Holocene. Glob Planet Change 33:107–116

    Google Scholar 

  • Behling H, Costa LD (2000) Holocene environmental changes from the Rio Curua record in the Caxiuana Region, Eastern Amazon Basin. Quat Res 53:369–377

    Google Scholar 

  • Behling H, Hooghiemstra H (1998) Late Quaternary palaeoecology and paleoclimatology from pollen records of the savannas of the Llanos Orientales in Colombia. Palaeogeogr Palaeoclimatol Palaeoecol 139:251–267

    Google Scholar 

  • Behling H, Hooghiemstra H (1999) Environmental history of the Colombian savannas of the Llanos Orientales since the last glacial maximum from lake records El Pinal and Carimagua. J Palaeolimnol 21:461–476

    Google Scholar 

  • Behling H, Keim G, Irion G, Junk W, De Mello J (2001) Holocene environmental changes in the Central Amazon Basin inferred from Lago Calado (Brazil). Palaeogeogr Palaeoclimatol Palaeoecol 173:87–101

    Google Scholar 

  • Bertassoli DJ, Sawakuchi AO, Chiessi CM, Schefuß E, Hartmann GA, Häggi C, Cruz FW, Zabel M, McGlue MM, Santos RA, Pupim FN (2019) Spatiotemporal variations of riverine discharge within the Amazon Basin during the late Holocene coincide with extratropical temperature anomalies. Geophys Res Lett 46(15):9013–9022

    Google Scholar 

  • Biscaye PE (1965) Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol Soc Am Bull 76:803–832

    Google Scholar 

  • Blaauw M (2010) Methods and code for ‘classical’ age-modeling of radiocarbon sequences. Quat Geochronol 5:512–518

    Google Scholar 

  • Bush MB, De Oliveira P, Colinvaux PA, Miller MC, Moreno E (2004) Amazonian palaeoecological histories: one hill, three watersheds. Palaeogeogr Palaeoclimatol Palaeoeoecol 214:359–393

    Google Scholar 

  • Bush MB, Silman MR, Listopad CMCS (2007) A regional study of Holocene climate change and human occupation in Peruvian Amazonia. J Biogeogr 34:1342–1356

    Google Scholar 

  • Cordeiro RC, Turcq B, Oliveira Da Silva A, Suguio K (1997) Holocene environmental changes in Caraja´s region (Pará, Brazil) recorded by lacustrine deposits. Verh Int Verein Limnol 26:814–817

    Google Scholar 

  • Cordeiro RC, Turcq B, Suguio K, Silva AO, Sifeddine A, Volkmer-Ribeiro C (2008) Holocene fires in east Amazonia (Carajás), new evidences, chronology and relation with paleoclimate. Glob Planet Change 61:49–62

    Google Scholar 

  • Cordeiro RC, Turcq B, Sifeddine A, Lacerda LD, Silva Filho EV, Gueiros B, Potty YP, Santelli RE, Pádua EO, Patchinelam SR (2011) Biogeochemical indicators of environmental changes from 50 Ka to 10 Ka in a humid region of the Brazilian Amazon. Palaeogeogr Palaeoclimatol Palaeoecol 299:426–436

    Google Scholar 

  • Cordeiro RC, Santelli RE, Machado W, Moreira LS, Freire AS, Braz BF, Rizzini-Ansari N, Bidone ED, Meniconi MFG (2017) Biogeochemical factors controlling arsenic distribution in a densely populated tropical estuary (Guanabara Bay, RJ, Brazil). Environ Earth Sci 76:561

    Google Scholar 

  • Davies SJ, Lamb HF, Roberts SJ (2015) Micro-XRF core scanning in palaeolimnology: recent developments. In: Croudace I, Rothwell R (eds) Micro-XRF studies of sediment cores. Developments in paleoenvironmental research, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9849-5_7

    Chapter  Google Scholar 

  • De Freitas HA, Pessenda LCR, Aravena R, Gouveia SEM, Ribeiro ADS, Boulet RE (2001) Late quaternary vegetation dynamics in the Southern Amazon basin inferred from carbon isotopes in soil organic matter. Quat Res 55:39–46

    Google Scholar 

  • Desjardins T, Carneiro Filho A, Mariotti A (1996) Changes of the forest-savanna boundary in Brazilian Amazonia during the Holocene revealed by stable isotope ratios of soil organic carbon. Oecologia 108:749–756

    Google Scholar 

  • Didyk BM, Simoneit BRT, Brassel SC, Eglinton G (1978) Organic geochemical indicators of palaeonvironmental conditions of sedimentation. Nature 272:216–221

    Google Scholar 

  • Ding X, Li D, Zheng L, Bao H, Chen HF, Kao SJ (2016) Sulfur geochemistry of a Lacustrine record from Taiwan reveals enhanced marine aerosol input during the early holocene. Sci Rep. https://doi.org/10.1038/srep38989

    Article  Google Scholar 

  • Fontes D, Cordeiro RC, Martins GS, Behling H, Turcq B, Sifeddine A, Seoane JCC, Moreira LS, RodrigueS R (2017) Paleoenvironmental dynamics in South Amazonia, Brazil, during the last 35,000 years inferred from pollen and geochemical records of Lago do Saci. Quat Sci Rev 173:161–180

    Google Scholar 

  • Gasse F (2009) Paleohydrology. In: Gornitz V (ed) Encyclopedia of paleoclimatology and ancient environments. Springer, Dordrecht, pp 733–738

    Google Scholar 

  • Glasby GP (2006) Manganese: predominant role of nodules and crusts. In: Schultz HD, Zabel M (eds) Marine geochemistry. Springer, Berlin, pp 371–415

    Google Scholar 

  • Gloor M, Brienen RJW, Galbraith D, Feldpausch TR, Schöngart J, Guyot J-L (2013) Intensification of the Amazon hydrological cycle over the last two decades. Geophys Res Lett 40:1–5

    Google Scholar 

  • Gonçalves Júnior ES, Soares E, Tatumi S, Yee M, Mittani J (2016) Pleistocene-Holocene sedimentation of Solimões-Amazon fluvial system between the tributaries Negro and Madeira, Central Amazon. Braz J Geol 46:167–180

    Google Scholar 

  • Guimarães ST, Lima HN, Teixeira WG, Neves AF, Silva WR, Macedo RS, Souza KW (2013) Caracterização e classificação de gleissolos da Várzea do Rio Solimões (Manacapuru e Iranduba), Amazonas, Brasil. R Bras Ci Solo 37:317–326

    Google Scholar 

  • Guyot JL, Jouanneau JM, Soares L, Boaventura GR, Maillet N, Lugane C (2007) Clay mineral composition of river sediments in the Amazon Basin. CATENA 71:340–356

    Google Scholar 

  • Hermanowski B, Lima da Costa M, Behling H (2012) Environmental changes in southeastern Amazonia during the last 25,000 yr revealed from a paleoecological record. Quat Res 77:138–148

    Google Scholar 

  • Hogg AG, Hua Q, Blackwell PG, Niu M, Buck CE, Guilderson TP, Heaton TJ, Palmer JG, Reimer PJ, Reimer RW, Turney CSM, Zimmerman SRH (2013) SHCAL13 southern hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55:1889–1903

    Google Scholar 

  • Horbe A, Behling H, Nogueira A, Mapes R (2011) Environmental changes in the western Amazonia: morphological framework, geochemistry, palynology and radiocarbon dating data. Anais da Academia Brasileira de Ciências 83:863–874

    Google Scholar 

  • Irion G, Bush MB, Nunes de Mello JA, Stüben D, Neumann T, Müller G, Morais JA, Junk W (2006) A multiproxy palaeoecological record of Holocene lake sediments from the Rio Tapajos, eastern Amazonia. Palaeogeogr Palaeoclimatol Palaeoecol 240:523–535

    Google Scholar 

  • Kim J-H, Zell C, Moreira-Turcq P, Pérez MAP, Abril G, Mortillaro J-M, Weijers JWH, Meziane T, Sinninghe Damsté JS (2012) Tracing soil organic carbon in the lower Amazon River and its tributaries. Geochim Cosmochim Acta 90:163–180

    Google Scholar 

  • Kopriva S (2006) Regulation of sulfate assimilation in arabidopsis and beyond. Ann Bot Lond 97:479–495

    Google Scholar 

  • Lalonde K, Alfonso M, Ouellet A, Gelinas Y (2012) Preservation of organic matter in sediments promoted by iron. Nature 483:198–200

    Google Scholar 

  • Latrubesse E, Franzinelli E (2002) The Holocene alluvial plain of the middle Amazon River, Brazil. Geomorphology 44:241–257

    Google Scholar 

  • Losher AJ, Kelts KR (1989) Organic sulphur fixation in freshwater lake sediments and the implication for CS ratios. Terra Nova 1:253–261

    Google Scholar 

  • Maslin MA, Burns SJ (2000) Reconstruction of the Amazon Basin effective moisture availability over the past 14,000 years. Science 22:2285–2287

    Google Scholar 

  • Mayle F, Power MJ (2008) Impact of a drier Early–Mid-Holocene climate upon Amazonian forests. Philos Trans R Soc Lond B Biol Sci 363:1829–1838

    Google Scholar 

  • Mayle FE, Burbridge R, Killeen TJ (2000) Millennial-scale dynamics of southern Amazonian rain forests. Science 290:2291–2294

    Google Scholar 

  • Meade R (1994) Suspended sediments of the modern Amazon and Orinoco Rivers. Quat Int 21:29–39

    Google Scholar 

  • Melack JM, Engle D (2009) An organic carbon budget for an Amazon floodplain lake. Verh Int Verein Limnol 30:1179–1182

    Google Scholar 

  • Melack JM, Forsberg BR (2001) Biogeochemistry of Amazon Floodplain Lakes and associated wetlands. In: McClain ME, Victoria RL, Richey JE (eds) The biogeochemistry of the Amazon Basin. Oxford University Press, New York, pp 235–274

    Google Scholar 

  • Meyers PA (2003) Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the LaurentianGreat Lakes. Org Geochem 34:261–289

    Google Scholar 

  • Meyers PA, Teranes JL (2001) Sediment organic matter. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments. Volume 2: physical and geochemical methods, vol 2. Kluwer Academic Publishers, Dordrecht, pp 239–269

    Google Scholar 

  • Moreira LS, Moreira-Turcq P, Turcq B, Caquineau S, Cordeiro RC (2012) Paleohydrological changes in an Amazonian floodplain lake: Santa Ninha Lake. J Paleolimnol 48:339–350

    Google Scholar 

  • Moreira LS, Moreira-Turcq P, Cordeiro RC, Turcq B, Caquineau S, Viana JCC, Brandini N (2013a) Holocene paleoenvironmental reconstruction in the Eastern Amazonian Basin: Comprido Lake. J S Am Earth Sci 44:55–62

    Google Scholar 

  • Moreira LS, Moreira-Turcq P, Turcq B, Cordeiro RC, Kim J-H, Caquineau S, Mandengo Yogo M, Sinninghe Damsté JS (2013b) Paleohydrological controls on sedimentary organic matter composition in an Amazon floodplain lake, Lake Maracá (Brazil) during the Late Holocene. Holocene 23:1903–1914

    Google Scholar 

  • Moreira LS, Moreira-Turcq P, Turcq B, Cordeiro RC, Kim J-H, Caquineau S, Mandengo Yogo M, Sinninghe Damsté JS (2014) A mineralogical and organic geochemical overview of the effects of Holocene changes in Amazon River flow on three floodplain lakes. Palaeogeogr Palaeoclimatol Palaeoecol 415:152–164

    Google Scholar 

  • Moreira-Turcq P, Jouanneau JM, Turcq B, Seyler P, Weber O, Guyot JL (2004) Carbon sedimentation at Lago Grande de Curuai, a floodplain lake in the low Amazon region: insights into sedimentation rates. Palaeogeogr Palaeoclimatol Palaeoecol 214:27–40

    Google Scholar 

  • Moreira-Turcq P, Turcq B, Moreira LS, Amorim M, Cordeiro RC, Guyot JL (2014) A 2700 cal yr BP extreme flood event revealed by sediment accumulation in Amazon floodplains. Palaeogeogr Palaeoclimatol Palaeoecol 415:175–182

    Google Scholar 

  • Morison JIL, Long SP, Piedade MTF, Müller E, Junk WJ, Jones MB (2000) Very high productivity of the C4 aquatic grass Echinochloa polystachya in the Amazon floodplain confirmed by net ecosystem CO2 flux measurements. Oecologia 125(3):400–411. https://doi.org/10.1007/s004420000464

    Article  Google Scholar 

  • Mortillaro JM, Passarelli C, Abri LG, Hubasa C, Alberic P, Artigase LF, Benedetti MF, Thineya N, Moreira-Turcq P, Perez MAP, Vidal LO, Meziane T (2016) The fate of C4 and C3 macrophyte carbon in central Amazon floodplain waters: insights from a batch experiment. Limnologica 59:90–98

    Google Scholar 

  • Naeher S, Gilli A, North RP, Hamann Y, Schubert CJ (2013) Tracing bottom water oxygenation with sedimentary Mn/Fe ratios in Lake Zurich, Switzerland. Chem Geol 352:125–133

    Google Scholar 

  • Peineirud EK (2000) Interpretation of Si concentrations in lake sediments: three case studies. Environ Geol 40:64–72

    Google Scholar 

  • Piedade MTF, Junk WF, Long SP (1991) The productivity of the C4 grass Echinochloa polystachya on the Amazon floodplain. Ecology 72:1456–1463

    Google Scholar 

  • Projeto Radambrasil (1974) Radambrasil folha SA.21 Santarém. Levantamento de Recursos naturais, Rio de Janeiro

    Google Scholar 

  • Quesada CA, Lloyd J, Anderson LO, Fyllas NM, Schwarz M, Czimczik CI (2011) Soils of Amazonia with particular reference to the RAINFOR sites. Biogeosciences 8:1415–1440

    Google Scholar 

  • Quintana-Cobo I, Moreira-Turcq P, Cordeiro RC, Aniceto K, Crave A, Fraizy P, Moreira LS, Duarte Contrera JMA, Turcq B (2018) Dynamics of floodplain lakes in the Upper Amazon Basin during the late Holocene. Comptes Rendus Geosci 350:55–64

    Google Scholar 

  • Reitsema RE, Meire P, Schoelynck J (2018) The future of freshwater macrophytes in a changing world: dissolved organic carbon quantity and quality and its interactions with macrophytes. Front Plant Sci 9:1–15

    Google Scholar 

  • Russell JM, Werne JP (2009) Climate change and productivity variations recorded by sedimentary sulfur in Lake Edward, Uganda/D. R. Congo. Chem Geol 264:337–346

    Google Scholar 

  • Sa NP, Absy ML, Soares EAA (2016) Late Holocene paleoenvironments of the floodplain of the Solimões River, Central Amazonia, based on the palynological record of Lake Cabaliana. Acta Bot Bras 30:473–485

    Google Scholar 

  • Saatchi SS, Harrisc NL, Brownc S, Lefskyd M, Mitcharde ETA, Salasf W, Zutta BR, Buermannb W, Lewisg SL, Hagenf S, Petrovac S, Whiteh L, Silmani M, Morelj A (2011) Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci USA 108:9899–9904

    Google Scholar 

  • Seltzer G, Rodbell D, Burns S (2000) Isotopic evidence for late Quaternary climatic change in tropical South America. Geology 28:35–38

    Google Scholar 

  • Sifeddine A, Bertrand P, Fournier M, Martin L, Servany M, Soubies F, Suguio K, Turcq B (1994) La sédimentation organique lacustre en milieu tropical humide (Carajas, Amazonie orientale, Bresil): relation avec les changements climatiques au cours des 60 000 dernières anneés. Bull Soc Geol France 165:613–621

    Google Scholar 

  • Sifeddine A, Martin L, Turcq B, Volkmer-Ribeiro C, Soubies F, Cordeiro RC, Suguio K (2001) Variations of the Amazonian rainforest environment: a sedimentological record covering 30,000 years. Palaeogeogr Palaeoclimatol Palaeoecol 168:221–235

    Google Scholar 

  • Sioli H (ed) (1984) The Amazon and its main effluents: hydrograph, morphology of the river courses and river types. In: The Amazon limnology and landscape ecology of a might tropical river and its basin. W. Junk Publishers, Dordrecht, pp 127–165

    Google Scholar 

  • Soubies F (1980) Existence d’une phase seche en Amazonie bresilienne datee par la presence de charbons dans les sols (6000–3000 ans B.P.). Cah ORSTOM Geologie 11:133–148

    Google Scholar 

  • Turcq B, Sifeddine A, Martin L, Absy ML, Soubies F, Suguio K, Volkmer-Ribeiro C (1998) Amazonian rainforest fires: a lacustrine record of 7000 years. Ambio 27:139–142

    Google Scholar 

  • van Breukelen MR, Vonhof HB, Hellstrom JC, Wester WCG, Kroon D (2008) Fossil drip water in stalagmites reveals Holocene temperature and rainfall variation in Amazonia. Earth Planet Sci Lett 275:54–60

    Google Scholar 

  • Weng C, Bush MB, Athens JS (2002) Two histories of climate change and hydrarch succession in Ecuadorian Amazonia. Rev Palaeobot Palynol 120:73–90

    Google Scholar 

  • Wetzel R (2001) Limnology: lake and river ecosystems, 3rd edn. Academic Press, San Diego

    Google Scholar 

Download references

Acknowledgements

This research was supported by the French Research Institute for Development (IRD) and by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. We are also grateful for the comments from the reviewers that helped us improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciane Silva Moreira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreira, L.S., Moreira-Turcq, P., Cordeiro, R.C. et al. Climate and hydrologic controls on late Holocene sediment supply to an Amazon floodplain lake. J Paleolimnol 64, 389–403 (2020). https://doi.org/10.1007/s10933-020-00144-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-020-00144-y

Keywords

Navigation