Skip to main content
Log in

Pore Structure and Transport Properties in Bulk YBa2Cu3O7−δ Doped with Sb2O3

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this work we have studied the pore structure and electrical transport properties of superconducting YBa2Cu3O7−y polycrystalline samples doped by the addition of different Sb2O3 concentrations, i.e. resulting in (YBa2Cu3O7−y )1−x (Sb2O3) x . The samples were prepared through the solid-state reaction method. Rietveld analyses of X-ray diffraction data were used to investigate how the lattice parameters are modified by doping. Specific superficial area measurements identified the principal characteristics of the pore structure of the samples and how these properties change with doping. The superconducting properties were studied by using zero field cooling magnetization and transport critical current measurements. The critical temperature of the samples does not depend on the doping level, but their transport critical current density strongly decreases as the Sb2O3 concentration is increased. Our experimental results suggest that for the samples studied here there is not a direct correlation between the modification by doping of both, the pore structure and the transport critical current density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Foltyn, S.R., Civale, L., MacManus-Driscoll, J.L., Jia, Q.X., Maiorov, B., Wang, H., Maley, M.: Nat. Mater. 6, 631–642 (2007)

    Article  ADS  Google Scholar 

  2. Chisholm, M.F., Pennycook, S.J.: Nature 351, 47–49 (1991)

    Article  ADS  Google Scholar 

  3. Durrell, J.H., Eom, C.B., Gurevich, A., Hellstrom, E.E., Tarantini, C., Yamamoto, A., Larbalestier, D.C.: Rep. Prog. Phys. 74, 124511 (2011)

    Article  ADS  Google Scholar 

  4. Hilgenkamp, H., Mannhart, J.: Appl. Phys. Lett. 73, 265–267 (1998)

    Article  ADS  Google Scholar 

  5. Khaled, E.: Cryogenics 51, 452 (2011)

    Article  Google Scholar 

  6. Liyanawaduge, N.P., Singh, S.K., Kumar, A., Awana, V.P.S., Kishan, H.: J. Supercond. Nov. Magn. 24, 1599 (2011)

    Article  Google Scholar 

  7. Ozturk, K., Celik, S., Cevik, U., Yanmaz, E.: J. Alloys Compd. 433, 46–52 (2007)

    Article  Google Scholar 

  8. Gupta, S., Yadav, R.S., Lalla, N.P., Verma, G.D., Das, B.: Integr. Ferroelectr. 116, 68 (2010)

    Article  Google Scholar 

  9. Antal, V., Kanuchova, M., Sefcikova, M., Kovac, J., Diko, P., Eisterer, M., Hoerhager, N., Zehetmayer, M., Weber, H.W., Chaud, X.: Supercond. Sci. Technol. 22, 105001 (2009)

    Article  ADS  Google Scholar 

  10. Mahmood, A., Park, S.D., Jun, B.H., Youn, J.S., Han, Y.H., Sung, T.H., Kim, C.J.: Physica C 469, 15 (2009)

    Article  Google Scholar 

  11. Paulose, K.V., Koshy, J., Devi, P., Damodaran, A.D.: Appl. Phys. Lett. 59, 1251–1253 (1991)

    Article  ADS  Google Scholar 

  12. Jin, S., Tiefel, T.H., Fastnacht, R.A., Kammlott, G.W.: Appl. Phys. Lett. 60, 3307–3309 (1992)

    Article  ADS  Google Scholar 

  13. Murugesan, M., Pinto, R., Pai, S.P., Apte, P.R., Sharon, M., Gupta, L.C.: Physica C 234, 339–342 (1994)

    Article  ADS  Google Scholar 

  14. Vlakhov, E., Gattef, E., Dimitrev, Y., Staneva, A.: J. Mater. Sci. Lett. 13, 1654–1656 (1994)

    Article  Google Scholar 

  15. Akyüz, G.B., Kocabas, K., Yıldız, A., Özyüzer, L., Çiftçioglu, M.: J. Supercond. Nov. Magn. 24, 2189–2201 (2011)

    Article  Google Scholar 

  16. Fu, W.T., Akerboom, S., Ijdo, D.J.W.: J. Solid State Chem. 180, 1547–1552 (2009)

    Article  ADS  Google Scholar 

  17. Staszczuk, P., Sternik, D., Chadzynski, G.W., Robens, E., Blachnio, M.: J. Therm. Anal. Calorim. 86, 133–136 (2006)

    Article  Google Scholar 

  18. Staszczuk, P., Sternik, D., Chadzynski, G.W., Kutarov, V.V.: J. Alloys Compd. 367, 277–282 (2004)

    Article  Google Scholar 

  19. Neimark, A., Lin, Y., Ravikovitch, P., Thommes, M.: Carbon 47, 1617–1628 (2009)

    Article  Google Scholar 

  20. Rouquerol, F., Rouquerol, J., Sing, K.: Adsorption by Powders and Porous Solids. Principles Methodology and Applications. Academic Press, San Diego (1999)

    Google Scholar 

  21. Staszczuk, P., Chadzynski, G.W., Sternik, D.: J. Therm. Anal. Calorim. 62, 451–459 (2000)

    Article  Google Scholar 

  22. Shi, D., Capone, D.W., Goudey, G.T., Singh, J.P., Zaluzec, N.J., Goretta, K.C.: Mater. Lett. 6, 217–221 (1988)

    Article  Google Scholar 

  23. Murakami, M.: Supercond. Sci. Technol. 5, 185–203 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Gonzalez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piumbini, C.K., Deleprani, F., Quispe-Marcatoma, J. et al. Pore Structure and Transport Properties in Bulk YBa2Cu3O7−δ Doped with Sb2O3 . J Supercond Nov Magn 25, 2315–2321 (2012). https://doi.org/10.1007/s10948-012-1658-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-012-1658-2

Keywords

Navigation