Skip to main content
Log in

An Interior Point Algorithm for Mixed Complementarity Nonlinear Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Nonlinear complementarity and mixed complementarity problems arise in mathematical models describing several applications in Engineering, Economics and different branches of physics. Previously, robust and efficient feasible directions interior point algorithm was presented for nonlinear complementarity problems. In this paper, it is extended to mixed nonlinear complementarity problems. At each iteration, the algorithm finds a feasible direction with respect to the region defined by the inequality conditions, which is also monotonic descent direction for the potential function. Then, an approximate line search along this direction is performed in order to define the next iteration. Global and asymptotic convergence for the algorithm is investigated. The proposed algorithm is tested on several benchmark problems. The results are in good agreement with the asymptotic analysis. Finally, the algorithm is applied to the elastic–plastic torsion problem encountered in the field of Solid Mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Leontiev, A., Huacasi, W., Herskovits, J.: An optimization technique for the solution of the signorini problem using the boundary element method. Struct. Multidiscip. Optim. 24(1), 72–77 (2002)

    Article  Google Scholar 

  2. Glowinski, R., Lions, J., Trémolières, R.: Numerical Analysis of Variational Inequalities, vol. 8. North-Holland, Amsterdam (1981)

    Book  MATH  Google Scholar 

  3. Judice, J., Soares, M.: Solution of some linear complementarity problems arising in variational models of mechanics. Investigaç. Operac. 18, 17–31 (1998)

    Google Scholar 

  4. Chapiro, G., Gutierrez, A., Herskovits, J., Mazorche, S., Pereira, W.: Numerical solution of a class of moving boundary problems with a nonlinear complementarity approach. J. Optim. Theory Appl. 168(2), 534–550 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ramírez, A., Mazorche, S., Chapiro, G.: Numerical simulation of an in-situ combustion model formulated as mixed complementarity problem. Revista Interdisciplinar de Pesquisa em Engenharia—RIPE 2(17), 172–181 (2016)

    Google Scholar 

  6. Dirkse, S., Ferris, M.: Mcplib: a collection of nonlinear mixed complementarity problems. Optim. Method Softw. 5(4), 319–345 (1995)

    Article  Google Scholar 

  7. Simantiraki, E., Shanno, D.: An infeasible-interior-point algorithm for solving mixed complementarity problems. In: Complementarity and Variational Problems: State of the Art, MC Ferris and JS Pang, eds., Philadelphia, Pennsylvania, pp. 386–404 (1997)

  8. Dirkse, S., Ferris, M.: The path solver: a nommonotone stabilization scheme for mixed complementarity problems. Optim. Method Softw. 5(2), 123–156 (1995)

    Article  Google Scholar 

  9. Daryina, A., Izmailov, A., Solodov, M.: A class of active-set Newton methods for mixed complementarityproblems. SIAM J. Optim. 15(2), 409–429 (2005)

    Article  MATH  Google Scholar 

  10. Daryina, A., Izmailov, A., Solodov, M.: Numerical results for a globalized active-set Newton method for mixed complementarity problems. Comput. Appl. Math. 24(2), 293–316 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Liu, C., Atluri, S.: A fictitious time integration method (FTIM) for solving mixed complementarity problems with applications to non-linear optimization. Comput. Model. Eng. Sci. 34(2), 155–178 (2008)

    MATH  MathSciNet  Google Scholar 

  12. Gabriel, S.: A hybrid smoothing method for mixed nonlinear complementarity problems. Comput. Optim. Appl. 9(2), 153–173 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kanzow, C.: Global optimization techniques for mixed complementarity problems. J. Global Optim. 16(1), 1–21 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Herskovits, J.: A feasible directions interior point technique for nonlinear optimization. J. Optim. Theory Appl. 99(1), 121–146 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Herskovits, J.: A two-stage feasible directions algorithm for nonlinear constrained optimization. Math. Program 36(1), 19–38 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  16. Herskovits, J.: A two-stage feasible direction algorithm including variable metric techniques for non-linear optimization problems. Ph.D. thesis, Inria (1982)

  17. Herskovits, J., Mazorche, S.: A feasible directions algorithm for nonlinear complementarity problems and applications in mechanics. Struct. Multidiscip. Optim. 37(5), 435–446 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mazorche, S.: Algoritmos para problemas de complementaridade não linear. Ph.D. thesis, Universidade Federal do Rio de Janeiro (2007)

  19. Billups, S., Dirkse, S., Ferris, M.: A comparison of large scale mixed complementarity problem solvers. Comput. Optim. Appl. 7(1), 3–25 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. McCormick, G.P.: Second Order Conditions for Constrained Minima, pp. 259–270. Springer, Basel (2014)

    Google Scholar 

  21. Bazaraa, M., Sherali, H., Shetty, C.: Nonlinear programming: theory and algorithms. Wiley, New York (2013)

    MATH  Google Scholar 

  22. Herskovits, J.: A feasible direction interior-point technique for nonlinear optimization. J. Optim. Theory Appl. 99(1), 121–146 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  23. Gabriel, S.A.: Solving discretely constrained mixed complementarity problems using a median function. Optim. Eng. 18(3), 631–658 (2017)

  24. Rheinboldt, W.: Some nonlinear test problems. http://folk.uib.no/ssu029/Pdf_file/Testproblems/testprobRheinboldt03.pdf (2003)

  25. Sun, D., Han, J.: Newton and quasi-Newton methods for a class of nonsmooth equations and related problems. SIAM J. Optim. 7(2), 463–480 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kojima, M., Shindoh, S.: Extensions of Newton and quasi-Newton methods to systems of PC 1 equations. J. Oper. Res. Soc. Jpn. 29(4), 352–374 (1986)

  27. Herakovich, C., Hodge, P.: Elastic–plastic torsion of hollow bars by quadratic programming. Int. J. Mech. Sci. 11(1), 53–63 (1969)

    Article  MATH  Google Scholar 

  28. Wagner, W., Gruttmann, F.: Finite element analysis of Saint–Venant torsion problem with exact integration of the elastic–plastic constitutive equations. Comput. Method Appl. Mech. Eng. 190(29), 3831–3848 (2001)

    Article  MATH  Google Scholar 

  29. Stampacchia, G.: Formes bilinéaires coercitives sur les ensembles convexes. CR Acad. Sci. Paris 258(1), 964 (1964)

    MATH  Google Scholar 

  30. Brezis, H., Sibony, M.: Équivalence de deux inéquations variationnelles et applications. Arch. Ration. Mech. Anal. 41(4), 254–265 (1971)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewer and A. Chapiro for help in improving the text. Angel E. R. Gutierrez was supported in part by FONDECYT “Generación Científica—Becas Nacionales—Fortalecimiento de Programas de doctorado en universidades peruanas” under Award 217-2014. José Herskovits was supported in part by CNPq and FAPERJ. Grigori Chapiro was supported in part by FAPEMIG under Award APQ-01377-15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grigori Chapiro.

Additional information

Communicated by Ole Sigmund.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutierrez, A.E.R., Mazorche, S.R., Herskovits, J. et al. An Interior Point Algorithm for Mixed Complementarity Nonlinear Problems. J Optim Theory Appl 175, 432–449 (2017). https://doi.org/10.1007/s10957-017-1171-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-017-1171-7

Keywords

Mathematics Subject Classification

Navigation