Skip to main content
Log in

Existence of Projected Solutions for Generalized Nash Equilibrium Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We study the existence of projected solutions for generalized Nash equilibrium problems defined in Banach spaces, under mild convexity assumptions for each loss function and without lower semicontinuity assumptions on the constraint maps. Our approach is based on Himmelberg’s fixed point theorem. As a consequence, we also obtain existence of projected solutions for quasi-equilibrium problems and quasi-variational inequalities. Finally, we show the existence of projected solutions for Single-Leader–Multi-Follower games.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Anh, L.Q., Khanh, P.Q.: Semicontinuity of solution sets to parametric quasivariational inclusions with applications to traffic networks. II. Lower semicontinuities applications. Set-Valued Anal. 16(7–8), 943–960 (2008). https://doi.org/10.1007/s11228-008-0082-z

    Article  MathSciNet  MATH  Google Scholar 

  2. Arrow, K.J., Debreu, G.: Existence of an equilibrium for a competitive economy. Econometrica 22(3), 265–290 (1954)

    MathSciNet  MATH  Google Scholar 

  3. Aubin, J.P., Frankowska, H.: Closed Convex Processes, pp. 1–22. Birkhäuser Boston, Boston (2009). https://doi.org/10.1007/978-0-8176-4848-0_2

    Book  Google Scholar 

  4. Aussel, D.: New developments in quasiconvex optimization. In: Fixed Point Theory, Variational Analysis, and Optimization, pp. 173–208. Taylor & Francis (2014)

  5. Aussel, D., Dutta, J.: Generalized Nash equilibrium problem, variational inequality and quasiconvexity. Oper. Res. Lett. 36(4), 461–464 (2008)

    Article  MathSciNet  Google Scholar 

  6. Aussel, D., Svensson, A.: A Short State of the Art on Multi-Leader-Follower Games, pp. 53–76. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52119-6_3

    Book  Google Scholar 

  7. Aussel, D., Cervinka, M., Marechal, M.: Deregulated electricity markets with thermal losses and production bounds: models and optimality conditions. RAIRO-Oper. Res. 50, 19–38 (2015)

    Article  MathSciNet  Google Scholar 

  8. Aussel, D., Gupta, R., Mehra, A.: Evolutionary variational inequality formulation of the generalized Nash equilibrium problem. J. Optim. Theory Appl. 169(1), 74–90 (2016). https://doi.org/10.1007/s10957-015-0859-9

    Article  MathSciNet  MATH  Google Scholar 

  9. Aussel, D., Sultana, A., Vetrivel, V.: On the existence of projected solutions of quasi-variational inequalities and generalized Nash equilibrium problems. J. Optim. Theory Appl. 170, 818–837 (2016)

    Article  MathSciNet  Google Scholar 

  10. Contreras, J., Krawczyk, J.B., Zuccollo, J.: Economics of collective monitoring: a study of environmentally constrained electricity generators. CMS 13(3), 349–369 (2016). https://doi.org/10.1007/s10287-015-0247-9

    Article  MathSciNet  MATH  Google Scholar 

  11. Cotrina, J., García, Y.: Equilibrium problems: existence results and applications. Set-Valued Var. Anal. 26(1), 159–177 (2018). https://doi.org/10.1007/s11228-017-0451-6

    Article  MathSciNet  MATH  Google Scholar 

  12. Cotrina, J., Zúñiga, J.: Time-dependent generalized Nash equilibrium problem. J. Optim. Theory Appl. 179(3), 1054–1064 (2018). https://doi.org/10.1007/s10957-018-1383-5

    Article  MathSciNet  MATH  Google Scholar 

  13. Cotrina, J., Zúñiga, J.: Quasi-equilibrium problems with non-self constraint map. J. Glob. Optim. 75(1), 177–197 (2019). https://doi.org/10.1007/s10898-019-00762-5

    Article  MathSciNet  MATH  Google Scholar 

  14. Facchinei, F., Kanzow, C.: Generalized Nash equilibrium problems. 4OR 5(3), 173–210 (2007). https://doi.org/10.1007/s10288-007-0054-4

    Article  MathSciNet  MATH  Google Scholar 

  15. Facchinei, F., Fischer, A., Piccialli, V.: On generalized Nash games and variational inequalities. Oper. Res. Lett. 35(2), 159–164 (2007). https://doi.org/10.1016/j.orl.2006.03.004

    Article  MathSciNet  MATH  Google Scholar 

  16. Himmelberg, C.J.: Fixed points of compact multifunctions. J. Math. Anal. Appl. 38, 205–207 (1972). https://doi.org/10.1016/0022-247X(72)90128-X

    Article  MathSciNet  MATH  Google Scholar 

  17. Ichiishi, T.: Game Theory for Economic Analysis. Economic Theory, Econometrics, and Mathematical Economics. Academic Press, Inc., New York (1983)

    MATH  Google Scholar 

  18. Khanh, P.Q., Luu, L.M.: Lower semicontinuity and upper semicontinuity of the solution sets and approximate solution sets of parametric multivalued quasivariational inequalities. J. Optim. Theory Appl. 133(3), 329–339 (2007)

    Article  MathSciNet  Google Scholar 

  19. Krawczyk, J.B., Tidball, M.: Economic problems with constraints: how efficiency relates to equilibrium. Int. Game Theory Rev. 18(04), 1650011 (2016). https://doi.org/10.1142/S0219198916500110

    Article  MathSciNet  MATH  Google Scholar 

  20. Munkres, J.R.: Topology, 2nd edn. Prentice Hall, Inc., Upper Saddle River (2000)

    MATH  Google Scholar 

  21. Nikaidô, H., Isoda, K.: Note on non-cooperative convex games. Pac. J. Math. 5, 807–815 (1955)

    Article  MathSciNet  Google Scholar 

  22. Rosen, J.B.: Existence and uniqueness of equilibrium points for concave \(n\)-person games. Econometrica 33, 520–534 (1965). https://doi.org/10.2307/1911749

    Article  MathSciNet  MATH  Google Scholar 

  23. Tian, G., Zhou, J.: Transfer continuities, generalizations of the Weierstrass and maximum theorems: a full characterization. J. Math. Econ. 24, 281–303 (1995)

    Article  MathSciNet  Google Scholar 

  24. Vardar, B., Zaccour, G.: Strategic bilateral exchange of a bad. Oper. Res. Lett. 47(4), 235–240 (2019). https://doi.org/10.1016/j.orl.2019.03.013

    Article  MathSciNet  MATH  Google Scholar 

  25. von Stackelberg, H.: Marktform und Gleichgewicht. Springer, Wien (1934)

    MATH  Google Scholar 

  26. von Stackelberg, H.: Market Structure and Equilibrium. Springer, Berlin (2011)

    Book  Google Scholar 

  27. Yu, J., Wang, N.F., Yang, Z.: Equivalence results between Nash equilibrium theorem and some fixed point theorems. Fixed Point Theory Appl. pp. Paper No. 69, 10 (2016). https://doi.org/10.1186/s13663-016-0562-z

  28. Zhou, L.: The structure of the Nash equilibrium sets of standard 2-player games. In: Aliprantis, C.D., Matzkin, R.L., McFadden, D.L., Moore, J.C., Yannelis, N.C. (eds.) Rationality and Equilibrium, pp. 57–66. Springer, Berlin (2006). https://doi.org/10.1007/3-540-29578-X_3

    Chapter  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referees for their valuable remarks and suggestions which certainly improved this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Cotrina.

Additional information

Communicated by Jafar Zafarani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bueno, O., Cotrina, J. Existence of Projected Solutions for Generalized Nash Equilibrium Problems. J Optim Theory Appl 191, 344–362 (2021). https://doi.org/10.1007/s10957-021-01941-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-021-01941-9

Keywords

Mathematics Subject Classification

Navigation