Skip to main content
Log in

Removal of Methylene Blue by Hydrogels based on N, N-Dimethylacrylamide and 2-Oxazoline macromonomer

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

New hydrogels (HG) were synthesized in aqueous medium by free radical polymerization of N,N-dimethylacrylamide (DMAA) and 2-oxazoline macromonomer (MM) initiated by potassium persulfate (KPS) and catalyzed by N,N,N,N′-tetramethylethylenediamine (TEMED). In this polymerization, the monomer DMAA was also used as a crosslinker because it has the ability of self-crosslinking in the presence of peroxodisulfate initiator type. The macromonomer (DP = 24) was a gradient copolymer of 2-methyl-2-oxazoline and methyl-3-(oxazol-2-yl)-propionate with a styryl end group. 1H high-resolution (HR)-MAS NMR spectroscopy allowed to confirm the structure of hydrogels and to determine the molar content of DMAA and MM in each of them. Hydrogels (HG-H) containing carboxylic groups were obtained by basic hydrolysis of HG. Hydrolyzed hydrogels (HG-H) were used for the adsorption of methylene blue (MB) in aqueous medium. It was found that the MB adsorption increased as the initial MB concentration increased, and maximum adsorption capacities were found. The influence of pH value on MB adsorption was evaluated, showing that the MB adsorption capacity of the hydrogels was higher at pH value ≥ 5.7. Adsorption isotherms were studied using Langmuir and Freundlich models. The latter model describes best the process suggesting a possible adsorption mechanism through electrostatic interactions between MB and HG-H hydrogels. The MB adsorbed inside the hydrogels, could be removed with an acidic solution and therefore the hydrogel could be applied to adsorb MB again.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Geetha K, Velmani N (2015) Diverse technology and methods for dye treatment. Asian J Chem 27:1177–1184

    Article  CAS  Google Scholar 

  2. Zhou Y, Lu J, Zhou Y, Liu Y (2019) Recent advances for dyes removal using novel adsorbents: a review. Environ Pollut 252:352–365

    Article  CAS  Google Scholar 

  3. Regti A, Lamari MR, Stiriba S, Haddad ME (2016) Removal of basic blue 41 dyes using Persea Americana-activated carbon prepared by phosphoric acid action. Int J Ind Chem 8:187–195

    Article  Google Scholar 

  4. Adeyemo AA, Adeoye IO, Bello OS (2017) Adsorption of dyes using different types of clay: a review. Appl Water Sci 7:543–568

    Article  CAS  Google Scholar 

  5. Sanchez L, Ollier R, Alvarez VA (2019) Sorption behavior of polyvinyl alcohol/bentonite hydrogels for dyes removal. J Polym Res 26:142

    Article  Google Scholar 

  6. Jana S, Mondal B, Tripathy T (2019) Efficient and selective removal of cationic organic dyes from their aqueous solutions by a nanocomposite hydrogel katira gum-cl-poly(acrylic acid-co-N,N-dimethylacrylamide)-bentonite. Appl Clay Sci 173:46–64

    Article  CAS  Google Scholar 

  7. Hernández-Martínez AR, Lujan-Montelongo JA, Silva-Cuevas C, Mota-Morales JD, Cortez-Valadez M, Ruíz-Baltazar A, Cruz M, Herrera-Ordonez J (2017) Swelling and methylene blue adsorption of poly(N,N-dimethylacrylamide-co-2-hydroxyethyl methacrylate) hydrogel. React Func Polym 122:75–84

    Article  Google Scholar 

  8. Yi J, Li Y, Yang L, Zhang L-M (2019) Kinetics and thermodynamic adsorption of Cu2+ and methylene blue to casein hydrogels. J Polym Res 26:235

    Article  CAS  Google Scholar 

  9. Bekiari V, Sotiropoulou M, Bokias G, Lianos P (2008) Use of poly(N,N-dimethylacrylamide-co-sodiumacrylate) hydrogel to extract cationic dyes and metals from water. Colloids Surface A Physicochem Eng Asp 312:214–218

    Article  CAS  Google Scholar 

  10. Cipriano BH, Banik SJ, Sharma R, Rumore D, Hwang W, Briber RM, Raghavan R (2014) Superabsorbent hydrogels that are robust and highly stretchable. Macromolecules. 47:4445–4452

    Article  CAS  Google Scholar 

  11. Needles HL, Whitfield RE (1956) Crosslinking of copolymers containing N,N-dimethylacrylamide. J Polym Sci Part A 3:3543–3548

    Google Scholar 

  12. Sun G, Huang Y, Li D, Chen E, Zhong Y, Fan Q (2019) Blue light initiated photopolymerization: kinetics and synthesis of superabsorbent and robust poly(N, N-dimethylacrylamide/sodium acrylate) hydrogels. Ind Eng Chem Res 58:9266–9275

    Article  CAS  Google Scholar 

  13. Zschoche S, Rueda JC, Binner M, Komber H, Janke A, Appelhans D, Voit B (2017) Temperature and pH dependent aggregation behavior of hydrophilic dual-sensitive poly(2-oxazoline)s block copolymers as latent amphiphilic macromolecules. Eur Polym J 88:623–635

    Article  CAS  Google Scholar 

  14. Dargaville TR, Park J-R, Hoogenboom R (2018) Poly(2-oxazoline) hydrogels: state-of-the-art and emerging applications. Macromol Biosci 18:1800070

    Article  Google Scholar 

  15. Hartlieb M, Kempe K, Schubert US (2015) Covalently cross-linked poly(2-oxazoline) materials for biomedical applications – from hydrogels to self-assembled and template structures. J Mater Chem B 3:526–538

    Article  CAS  Google Scholar 

  16. Jerca FA, Anghelache AM, Ghibu E, Cecoltan S, Stancu I-C, Trusca R, Valle E, Teodorescu M, Vuluga DM, Hoogenboom R, Jerca VV (2018) Poly(2-isopropenyl-2-oxazoline) hydrogels for biomedical applications. Chem Mater 30:7938–7949

    Article  CAS  Google Scholar 

  17. Xu X, Jerca FA, Van Hecke K, Jerca VV, Hoogenboom R (2020) High compression strength single network hydrogels with pillar[5]arene junction points. Mater Horiz 7:566–573

    Article  CAS  Google Scholar 

  18. Pizzi D, Humphries J, Morrow JP, Fletcher NL, Bell CA, Thurect KJ, Kempe K (2019) Poly(2-oxazoline) macromonomers as building blocks for functional and biocompatible polymer architectures. Eur Polym J 21:109258

    Article  Google Scholar 

  19. Rueda JC, Suárez C, Komber H, Zschoche S, Voit B (2019) Synthesis and characterization of pH- and thermo-responsive hydrogels based on poly(2-cyclopropyl-2-oxazoline) macromonomer, sodium acrylate, and acrylamide. Polym Bull. https://doi.org/10.1007/s00289-019-03034-0

  20. Witte H, Seeliger W (1974) Cyclische Imidsäureester aus Nitrilen und Aminoalkoholen. Liebligs Annalen der Chem 1974:996–1009

    Article  Google Scholar 

  21. Zarka M, Nuyken T, Weberkirch R (2003) Am Amphiphilic polymer supports for the assymetric hydrogenation of amino acid precursors in water. Chem Eur J 9:3228–3234

    Article  CAS  Google Scholar 

  22. Rueda JC, Campos E, Komber H, Zschoche S, Haussler L, Voit B (2013) Synthesis and characterization of new pH- and thermoresponsive hydrogels based on N-isopropylacrylamide and 2-oxazolines. Des Monomers Polym 17:208–216

    Article  Google Scholar 

  23. Langmuir I (1918) The adsorption of gases on lane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  24. Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:385–470

    CAS  Google Scholar 

  25. Ding C, Li Z, Jin J (2008) Adsorption behavior of p-chlorophenol on the reed wetland soils. J Environ Sci Technol 1:169–174

    Article  CAS  Google Scholar 

  26. Milan K (2014) Adsorption, chemisorption and catalysis. Chem Pap 68:1625–1638

    Google Scholar 

  27. Bouten P, Hersten D, Vergaelen M, Monnery B, Boerman M, Goosens H, Catak S, Hesat J, Van Speybroeck V, Hoogenboom R (2015) Accelerated living cationic ring-opening polymerization of a methyl ester functionalized 2-oxazoline monomer. Polym Chem 6:514–518

    Article  CAS  Google Scholar 

  28. Bouten P, Hersten D, Vergaelen M, Monnery B, Boerman M, Goosens H, Catak S, Hesat J, Van Speybroeck V, Hoogenboom R (2015) Synthesis of poly(2-oxazoline)s with side chain methyl ester functionalities: detailed understanding of living copolymerization behavior of methyl ester containing monomers with 2-alkyl-2-oxazolines. Polym Chem 53:2649–2661

    Article  CAS  Google Scholar 

  29. Zschoche S, Rueda JC, Binner M, Komber H, Janke A, Arndt K, Lehmann S, Voit B (2012) Reversibly switchable pH- and thermoresponsive core-shell nanogels based on poly(NiPAAm)-graft-poly(2-carboxyethyl-2-oxazoline)s. Macromol Chem Phys 213:215–226

    Article  CAS  Google Scholar 

  30. Guenzler H, Gremlich H-U (2002) IR spectroscopy – an introduction. Weinheim, Germany

Download references

Acknowledgements

The authors of this paper would like to thank the Research Department of the Pontifical Catholic of University of Peru (PUCP) for funding this research.

The authors thank Dr. Hartmut Komber and Prof. Brigitte Voit, of Leibniz Institute for Polymer Research Dresden Germany, for HR-MAS 1H NMR analysis and help with compiling the manuscript, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Rueda.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 258 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santillán, F., Rueda, J.C. Removal of Methylene Blue by Hydrogels based on N, N-Dimethylacrylamide and 2-Oxazoline macromonomer. J Polym Res 27, 263 (2020). https://doi.org/10.1007/s10965-020-02239-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02239-6

Keywords

Navigation