Skip to main content
Log in

Large sample neutron activation analysis of irregular-shaped pottery artifacts

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The large sample neutron activation analysis (LSNAA) method developed at NCSR “Demokritos” for large and irregular-shaped objects was applied for the analysis of a Peruvian pottery artifact with the shape of an animal. The correction factors required for neutron self-shielding and gamma-ray self-attenuation within the sample material were derived through Monte Carlo simulations using the MCNP code, based on an accurate model obtained by computerized tomography X-ray scanning. The LSNAA results were compared with those from conventional instrumental neutron activation analysis (INAA) and a very good agreement was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Overwater RMW, Bode P, De Goeij JJM, Hoogenboom JE (1996) Feasibility of elemental analysis of kilogram-size samples by instrumental neutron activation analysis. Anal Chem 68:341–348

    Article  CAS  Google Scholar 

  2. Blaauw M, Baas HW, Donze M (2003) Height-resolved large-sample INAA of a 1 m long, 13 cm diameter ditch-bottom sample. Nucl Instrum Methods Phys Res A 505:512–516

    Article  CAS  Google Scholar 

  3. Tzika F, Stamatelatos IE (2004) Thermal neutron self-shielding correction factors for large sample neutron activation analysis using the MCNP code. Nucl Instrum Methods Phys Res B 213:177–181

    Article  CAS  Google Scholar 

  4. Degenaar IH, Blaauw M, De Goeij JJM (2003) Correction for neutron self-shielding in large-sample prompt-gamma neutron activation analysis. J Radioanal Nucl Chem 257:467–470

    Article  CAS  Google Scholar 

  5. Tzika F, Stamatelatos IE, Kalef-Ezra J, Bode P (2004) Large sample neutron activation analysis: correction for neutron and gamma attenuation. Nukleonika 49:115–121

    CAS  Google Scholar 

  6. Overwater RMW, Bode P (1998) Computer simulations of the effects of inhomogeneities on the accuracy of large sample INAA. Appl Radiat Isot 49:967–976

    Article  CAS  Google Scholar 

  7. Tzika F, Stamatelatos IE, Kalef-Ezra J (2007) Neutron activation analysis of large volume samples: the influence of inhomogeneity. J Radioanal Nucl Chem 271:233–240

    Article  CAS  Google Scholar 

  8. Overwater RMW, Bode P, De Goeij JJM (1993) Gamma-ray spectroscopy of voluminous sources: corrections for source geometry and self-attenuation. Nucl Instrum Methods Phys Res A 324:209–218

    Article  Google Scholar 

  9. Stamatelatos IE, Tzika F, Vasilopoulou T, Koster-Ammerlaan MJJ (2010) Large sample neutron activation analysis of a ceramic vase. J Radioanal Nucl Chem 283:735–740

    Article  CAS  Google Scholar 

  10. Beeley PA, Garrett RG (1993) Neutron activation analysis of multiple large geological samples by in-pool irradiation using a SLOWPOKE-2 reactor. J Radioanal Nucl Chem 167:177–185

    Article  Google Scholar 

  11. Blaaw M (1997) The k 0 calibration of the IRI system for INAA of samples in the kg range. J Radioanal Nucl Chem 220:233–235

    Article  Google Scholar 

  12. Nair AGC, Acharya R, Sudarshan K, Gangotra S, Reddy AVR, Manohar SB, Goswami A (2003) Development of an internal monostandard instrumental neutron activation analysis method based on insitu detection efficiency for analysis of large nonstandard geometry samples. Anal Chem 75:4868–4874

    Article  CAS  Google Scholar 

  13. Bedregal PS, Mendoza PA, Ubillus MS, Cohen IM, Montoya EH (2014) The k 0 and relative INAA methods to determine elements in entire archaeological pottery objects. J Radioanal Nucl Chem 300:673–678

    Article  CAS  Google Scholar 

  14. Bedregal PS, Mendoza PA, Cohen IM, Baltuano O, Montoya EH (2012) Neutron activation analysis of archaeological artifacts using the conventional relative method: a realistic approach for analysis of large samples. J Radioanal Nucl Chem 291:37–42

    Article  CAS  Google Scholar 

  15. Zhu J, Solbrekken G, Hao W, Li Y, Zhen J, Zhen T, Glascock MD (2013) Neutron activation analysis of bulk samples from Chinese ancient porcelain to provenance research. J Radioanal Nucl Chem 298:237–242

    Article  CAS  Google Scholar 

  16. Roth C, Barbos D, Gugiu D, Datcu A, Dobrea D, Preda M, Gligor M, Mweetwa MB (2012) Irradiation and measurement devices and methods development for LSNAA applications at the TRIGA-ACPR core. J Radioanal Nucl Chem 291:461–466

    Article  CAS  Google Scholar 

  17. Dasari KB, Acharya R, Swain KK, Lakshmana Das N, Reddy AVR (2010) Analysis of large and non-standard geometry samples of ancient potteries by internal monostandard neutron activation analysis using in situ detection efficiency. J Radioanal Nucl Chem 286:525–531

    Article  CAS  Google Scholar 

  18. Sueki K, Oura Y, Sato W, Nakahara H, Tomizawa T (1998) Analysis of archaeological samples by the internal monostandard method of PGAA. J Radioanal Nucl Chem 234:27–31

    Article  CAS  Google Scholar 

  19. International Atomic Energy Agency, Innovative Neutron Activation Analysis of Large Objects with Emphasis on Archaeology, Radiation Technology Series, under preparation

  20. Overwater RMW, Hoogenboom JE (1994) Accounting for the thermal neutron flux depression in voluminous samples for instrumental neutron activation analysis. Nucl Sci Eng 117:141–157

    CAS  Google Scholar 

  21. Bode P, Overwater RMW, De Goeij JJM (1997) Large sample neutron activation analysis: present status and prospects. J Radioanal Nucl Chem 216:5–11

    Article  CAS  Google Scholar 

  22. X-5 Monte Carlo Team (2003) MCNP—a general Monte Carlo N-particle transport code, Version 5, LA-UR-03-1987, Apr 2003

  23. Rose PF (1991) Compiler and editor, ENDF-201, ENDF/B-VI Summary Documentation, BNL-NCS-17541. Brookhaven National Laboratory, New York

  24. Piton F, Lepy MC, Be MM, Plagnard J (2000) Efficiency transfer and coincidence summing corrections for γ-ray spectrometry. Appl Radiat Isot 52:791–795

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the International Atomic Energy Agency under Coordinated Research Project Agreement CRP-14565.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Vasilopoulou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilopoulou, T., Stamatelatos, I.E., Montoya, E.H. et al. Large sample neutron activation analysis of irregular-shaped pottery artifacts. J Radioanal Nucl Chem 303, 853–858 (2015). https://doi.org/10.1007/s10967-014-3307-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3307-7

Keywords

Navigation