Skip to main content
Log in

A review on improving the efficiency of photocatalytic water decontamination using ZnO nanorods

  • Review Paper: Sol–gel and hybrid materials for optical, photonic and optoelectronic applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Advanced oxidation processes (AOPs) are technologies for the remośśśval of organic contaminants in water. One of the main effective AOP technologies to degrade hazardous organics is photocatalysis. ZnO has been well-known as a significant photocatalyst material. One-dimensional ZnO nanorods (ZnO NRs) have been of utmost interest due to their high surface area, efficient charge transport, and superior photosensitivity. These features make ZnO-based nanorods exciting candidates for applications in photocatalysis. Even though photocatalysis using bare ZnO nanorods is useful in pollutant remediation, several drawbacks such as high recombination of photo-excited charge carriers and ineffective operation of sunlight make it less effective. In this work, we present a review of the current modification strategies carried out to increase the ZnO nanorods photoactivity, such as enhancing the photocatalytic activity of ZnO through modification of its electronic and optical properties, doping metal/nonmetal atoms, depositing noble metals, constructing heterojunctions, and coupling carbon materials. Finally, the relevance of the results and future directions of ZnO nanorods as a photoactive material was discussed.

Graphical abstract

Highlights

  • ZnO nanorods show high surface area, efficient charge transport, and superior photosensitivity.

  • Photocatalysis using bare ZnO nanorods is useful in pollutant remediation.

  • ZnO nanorods are improved through the modification of their electronic and optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Yi GC, Wang C, il Park W(2005) ZnO nanorods: synthesis, characterizationand applications Semicond Sci Technol 20(4):S22. https://doi.org/10.1088/0268-1242/20/4/003

    Article  CAS  Google Scholar 

  2. Khayatian A, Kashi MA, Azimirad R, Safa S, Akhtarian SFA (2016) Effect of annealing process in tuning of defects in ZnO nanorods and their application in UV photodetectors. Optik 127(11):4675–4681. https://doi.org/10.1016/j.ijleo.2016.01.177.

    Article  CAS  Google Scholar 

  3. Lee J, Chung J, Lim S (2010) Improvement of optical properties of post-annealed ZnO nanorods. Phys E Low Dimens Syst Nanostruct 42(8):2143–2146. https://doi.org/10.1016/j.physe.2010.04.013.

    Article  CAS  Google Scholar 

  4. Shouli B et al. (2010) Different morphologies of ZnO nanorods and their sensing property. Sens Actuators B Chem 146(1):129–137. https://doi.org/10.1016/j.snb.2010.02.011.

    Article  Google Scholar 

  5. Li C et al. (2015) Hexagonal ZnO nanorings: synthesis, formation mechanism and trimethylamine sensing properties. RSC Adv 5(98):80561–80567. https://doi.org/10.1039/c5ra14793j.

    Article  CAS  Google Scholar 

  6. Gerbreders V et al. (2020) Hydrothermal synthesis of ZnO nanostructures with controllable morphology change. CrystEngComm 22(8):1346–1358. https://doi.org/10.1039/c9ce01556f.

    Article  CAS  Google Scholar 

  7. di Mauro A, Zimbone M, Fragalà ME, Impellizzeri G (2016) Synthesis of ZnO nanofibers by the electrospinning process. Mater Sci Semicond Process 42:98–101. https://doi.org/10.1016/j.mssp.2015.08.003.

    Article  Google Scholar 

  8. Samadipakchin P, Mortaheb HR, Zolfaghari A (2017) ZnO nanotubes: preparation and photocatalytic performance evaluation. J Photochem Photobiol A Chem 337:91–99. https://doi.org/10.1016/j.jphotochem.2017.01.018.

    Article  CAS  Google Scholar 

  9. Sheikh M et al. (2020) Application of ZnO nanostructures in ceramic and polymeric membranes for water and wastewater technologies: a review. Chem Eng J 391:123475. https://doi.org/10.1016/j.cej.2019.123475.

    Article  CAS  Google Scholar 

  10. Ahmad R, Majhi SM, Zhang X, Swager TM, Salama KN (2019) Recent progress and perspectives of gas sensors based on vertically oriented ZnO nanomaterials. Adv Colloid Interface Sci 270:1–27. https://doi.org/10.1016/j.cis.2019.05.006.

    Article  CAS  Google Scholar 

  11. Chandraiahgari CR et al. (2015) Synthesis and characterization of ZnO nanorods with a narrow size distribution. RSC Adv 5(62):49861–49870. https://doi.org/10.1039/c5ra02631h.

    Article  CAS  Google Scholar 

  12. Ramos PG et al. (2017) Enhanced photoelectrochemical performance and photocatalytic activity of ZnO/TiO2 nanostructures fabricated by an electrostatically modified electrospinning. Appl Surf Sci 426(Dec):844–851. https://doi.org/10.1016/j.apsusc.2017.07.218.

    Article  CAS  Google Scholar 

  13. Nandi R, Major SS (2017) The mechanism of growth of ZnO nanorods by reactive sputtering. Appl Surf Sci 399:305–312. https://doi.org/10.1016/j.apsusc.2016.12.097.

    Article  CAS  Google Scholar 

  14. Zhang Q, Li C (2019) TiO2 coated zno nanorods by mist chemical vapor deposition for application as photoanodes for dye-sensitized solar cells. Nanomaterials 9(9):1339. https://doi.org/10.3390/nano9091339

    Article  CAS  Google Scholar 

  15. Asghar M, Mahmood K, Raja MY, Hasan MA (2013) Synthesis and characterization of ZnO nanorods using molecular beam epitaxy Adv Mater Res 622:919–924. https://doi.org/10.4028/www.scientific.net/AMR.622-623.919

  16. Sarangi SN (2016) Controllable growth of ZnO nanorods via electrodeposition technique: Towards UV photo-detection. J Phys D Appl Phys 49(35):355103. https://doi.org/10.1088/0022-3727/49/35/355103.

    Article  Google Scholar 

  17. Aslan F, Tumbul A, Göktas A, Budakoglu R, Mutlu IH (2016) Growth of ZnO nanorod arrays by one-step sol–gel process. J Sol-Gel Sci Technol 80(2):389–395. https://doi.org/10.1007/s10971-016-4131-z

    Article  CAS  Google Scholar 

  18. Foo KL, Hashim U, Muhammad K, Voon CH (2014) Sol–gel synthesized zinc oxide nanorods and their structural and optical investigation for optoelectronic application. Nanoscale Res Lett 9(1):1–10. https://doi.org/10.1186/1556-276X-9-429.

    Article  CAS  Google Scholar 

  19. Baratto C (2018) Growth and properties of ZnO nanorods by RF-sputtering for detection of toxic gases. RSC Adv 8(56):32038–32043. https://doi.org/10.1039/c8ra05357j.

    Article  CAS  Google Scholar 

  20. Young SJ, Chiou CL (2018) Synthesis and optoelectronic properties of Ga-doped ZnO nanorods by hydrothermal method. Microsyst Technol 24(1):103–107. https://doi.org/10.1007/s00542-016-3183-x

    Article  CAS  Google Scholar 

  21. Poornajar M, Marashi P, Haghshenas Fatmehsari D, Kolahdouz Esfahani M (2016) Synthesis of ZnO nanorods via chemical bath deposition method: the effects of physicochemical factors. Ceram Int 42(1):173–184. https://doi.org/10.1016/j.ceramint.2015.08.073.

    Article  CAS  Google Scholar 

  22. Alshehri NA, Lewis AR, Pleydell-Pearce C, Maffeis TGG (2018) Investigation of the growth parameters of hydrothermal ZnO nanowires for scale up applications. J Saudi Chem Soc 22(5):538–545. https://doi.org/10.1016/j.jscs.2017.09.004.

    Article  CAS  Google Scholar 

  23. Wang W et al. (2019) Fabrication and optical property of ZnO nanorod array by hydrothermal method. Ferroelectrics 549(1):204–211. https://doi.org/10.1080/00150193.2019.1592561.

    Article  CAS  Google Scholar 

  24. Huang CH, Chu YL, Ji LW, Tang IT, te Chu T, Chiou BJ (2020) Fabrication and characterization of homostructured photodiodes with Li-doped ZnO nanorods. Microsyst Technol, 1–7. https://doi.org/10.1007/s00542-020-04854-1.

  25. Nikola B et al. (2019) Highly textured seed layers for the growth of vertically oriented ZnO nanorods. Crystals 9(11):566. https://doi.org/10.3390/cryst9110566.

    Article  CAS  Google Scholar 

  26. Toe MZ et al. (2019) Effect of ZnO seed layer on the growth of ZnO nanorods on silicon substrate, in. Mater Today Proc 17:553–559. https://doi.org/10.1016/j.matpr.2019.06.334.

    Article  CAS  Google Scholar 

  27. Karaköse E, Çolak H (2017) Structural and optical properties of ZnO nanorods prepared by spray pyrolysis method. Energy 140:92–97. https://doi.org/10.1016/j.energy.2017.08.109.

    Article  Google Scholar 

  28. Dong X, Yang P, Shi R (2014) Fabrication of ZnO nanorod arrays via electrospinning assisted hydrothermal method. Mater Lett 135:96–98. https://doi.org/10.1016/j.matlet.2014.07.102.

    Article  CAS  Google Scholar 

  29. Sannakashappanavar BS, Pattanashetti NA, Byrareddy CR, Yadav AB (2018) Study of annealing effect on the growth of ZnO nanorods on ZnO seed layers. AIP Confer Proc 1943(1):020077. https://doi.org/10.1063/1.5029653.

  30. Lee KM, Lai CW, Ngai KS, Juan JC (2016) Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res 88:428–448. https://doi.org/10.1016/j.watres.2015.09.045.

    Article  CAS  Google Scholar 

  31. Mohd Adnan MA, Julkapli NM, Abd Hamid SB (2016) Review on ZnO hybrid photocatalyst: Impact on photocatalytic activities of water pollutant degradation. Rev Inorg Chem 36(2):77–104. https://doi.org/10.1515/revic-2015-0015.

    Article  CAS  Google Scholar 

  32. Zhang Y, Mandal R, Ratchford DC, Anthony R, Yeom J (2020) Si nanocrystals/ZnO nanowires hybrid structures as immobilized photocatalysts for photodegradation. Nanomaterials 10(3):491. https://doi.org/10.3390/nano10030491

    Article  CAS  Google Scholar 

  33. Rooydell R, Brahma S, Wang R-C, Modaberi MR, Ebrahimzadeh F, Liu C-P (2017) Cu doped ZnO nanorods with controllable Cu content by using single metal organic precursors and their photocatalytic and luminescence properties. J Alloy Compd 691:936–945. https://doi.org/10.1016/j.jallcom.2016.08.324

    Article  CAS  Google Scholar 

  34. Khalid NR et al. (2019) Enhanced photocatalytic activity of Al and Fe co-doped ZnO nanorods for methylene blue degradation. Ceram Int 45(17):21430–21435. https://doi.org/10.1016/j.ceramint.2019.07.132

    Article  CAS  Google Scholar 

  35. Koohgard M, Sarvestani AM, Hosseini-Sarvari M (2020) Photocatalytic synthesis of unsymmetrical thiourea derivatives via visible-light irradiation using nitrogen-doped ZnO nanorods. N J Chem 44(34):14505–14512. https://doi.org/10.1039/d0nj02197k

    Article  CAS  Google Scholar 

  36. Kumari V, Mittal A, Jindal J, Yadav S, Kumar N (2019) S-, N- and C-doped ZnO as semiconductor photocatalysts: a review. Front Mater Sci 13 (1). https://doi.org/10.1007/s11706-019-0453-4.

  37. Senthil Kumar P, Selvakumar M, Ganesh Babu S, Induja S, Karuthapandian S (2017) CuO/ZnO nanorods: An affordable efficient p-n heterojunction and morphology dependent photocatalytic activity against organic contaminants. J Alloy Compd 701:562–573. https://doi.org/10.1016/j.jallcom.2017.01.126.

    Article  CAS  Google Scholar 

  38. Li H et al. (2018) Enhanced photocatalytic activity and synthesis of ZnO nanorods/MoS2 composites. Superlattices Microstruct 117:336–341. https://doi.org/10.1016/j.spmi.2018.03.028.

    Article  CAS  Google Scholar 

  39. Lam SM, Sin JC, Abdullah AZ, Mohamed AR (2015) Sunlight responsive WO3/ZnO nanorods for photocatalytic degradation and mineralization of chlorinated phenoxyacetic acid herbicides in water. J Colloid Interface Sci 450:34–44. https://doi.org/10.1016/j.jcis.2015.02.075.

    Article  CAS  Google Scholar 

  40. Kwiatkowski M, Bezverkhyy I, Skompska M (2015) ZnO nanorods covered with a TiO2 layer: Simple sol-gel preparation, and optical, photocatalytic and photoelectrochemical properties. J Mater Chem A 3(24):12748–12760. https://doi.org/10.1039/c5ta01087j.

    Article  CAS  Google Scholar 

  41. Ye X, Wang Z, Li Z, Li W, Wang Q (2019) ZnO nanorod array/reduced graphene oxide substrate with enhanced performance in photocatalytic degradation. Micro Nano Lett 14(8):868–871. https://doi.org/10.1049/mnl.2018.5446.

    Article  CAS  Google Scholar 

  42. Cai R et al. (2016) 3D graphene/ZnO composite with enhanced photocatalytic activity. Mater Des 90:839–844. https://doi.org/10.1016/j.matdes.2015.11.020.

    Article  CAS  Google Scholar 

  43. Moussa H et al. (2018) Growth of ZnO nanorods on graphitic carbon nitride gCN sheets for the preparation of photocatalysts with high visible-light activity. ChemCatChem 10(21):4987–4997. https://doi.org/10.1002/cctc.201801206.

    Article  CAS  Google Scholar 

  44. Parashar M, Shukla VK, Singh R(2020) Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications J Mater Sci Mater Electron 31(5):3729–3749. https://doi.org/10.1007/S10854-020-02994-8

    Article  CAS  Google Scholar 

  45. Znaidi L (2010) Sol–gel-deposited ZnO thin films: a review. Mater Sci Eng: B 174(1–3):18–30. https://doi.org/10.1016/J.MSEB.2010.07.001.

    Article  CAS  Google Scholar 

  46. Sanchez C, Belleville P, Popall M, Nicole L (2011) Applications of advanced hybrid organic–inorganic nanomaterials: from laboratory to market. Chem Soc Rev 40(2):696–753. https://doi.org/10.1039/C0CS00136H.

    Article  CAS  Google Scholar 

  47. Vergés MA, Mifsud A, Serna CJ (1990) Formation of rod-like zinc oxide microcrystals in homogeneous solutions. J Chem Soc Faraday Trans 86(6):959–963. https://doi.org/10.1039/FT9908600959.

    Article  Google Scholar 

  48. Ram SDG, Ravi G, Athimoolam A, Mahalingam T, Kulandainathan MA(2011) Aqueous chemical growth of free standing vertical ZnO nanoprisms, nanorods and nanodiskettes with improved texture co-efficient and tunable size uniformity Appl Phys A 105(4):881–890. https://doi.org/10.1007/S00339-011-6518-6

    Article  CAS  Google Scholar 

  49. Vayssieres L, Keis K, Lindquist S-E, Hagfeldt A (2001) Purpose-built anisotropic metal oxide material: 3d highly oriented microrod array of ZnO. J Phys Chem B 105(17):3350–3352. https://doi.org/10.1021/JP010026S.

    Article  CAS  Google Scholar 

  50. Vayssieres L (2003) Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv Mater 15(5):464–466. https://doi.org/10.1002/ADMA.200390108.

    Article  CAS  Google Scholar 

  51. Baruah S, Dutta J (2009) pH-dependent growth of zinc oxide nanorods. J Cryst Growth 311(8):2549–2554. https://doi.org/10.1016/J.JCRYSGRO.2009.01.135.

    Article  CAS  Google Scholar 

  52. Yin YT, Que WX, Kam CH(2009) ZnO nanorods on ZnO seed layer derived by sol–gel process J Sol-Gel Sci Technol 53(3 Dec):605–612. https://doi.org/10.1007/S10971-009-2138-4

    Article  Google Scholar 

  53. Ridhuan NS, Razak KA, Lockman Z, Aziz AA (2012) Structural and morphology of ZnO nanorods synthesized using ZnO seeded growth hydrothermal method and its properties as UV sensing. PLoS ONE 7(11):e50405. https://doi.org/10.1371/JOURNAL.PONE.0050405.

    Article  CAS  Google Scholar 

  54. Liu Z, Ya J, E L(2009) Effects of substrates and seed layers on solution growing ZnO nanorods J Solid State Electrochem 14(6):957–963. https://doi.org/10.1007/S10008-009-0894-2

    Article  Google Scholar 

  55. Harun K, Hussain F, Purwanto A, Sahraoui B, Zawadzka A, Mohamad AA (2017) Sol–gel synthesized ZnO for optoelectronics applications: a characterization review. Mater Res Express 4(12):122001. https://doi.org/10.1088/2053-1591/AA9E82.

    Article  Google Scholar 

  56. Šutka A et al. (2016) Co doped ZnO nanowires as visible light photocatalysts. Solid State Sci 56:54–62. https://doi.org/10.1016/j.solidstatesciences.2016.04.008.

    Article  Google Scholar 

  57. Poornaprakash B, Chalapathi U, Subramanyam K, Vattikuti SVP, Park SH (2020) Wurtzite phase Co-doped ZnO nanorods: morphological, structural, optical, magnetic, and enhanced photocatalytic characteristics. Ceram Int 46(3):2931–2939. https://doi.org/10.1016/j.ceramint.2019.09.289.

    Article  CAS  Google Scholar 

  58. Roza L, Febrianti Y, Iwan S, Fauzia V (2020) The role of cobalt doping on the photocatalytic activity enhancement of ZnO nanorods under UV light irradiation. Surf Interfaces 18:100435. https://doi.org/10.1016/j.surfin.2020.100435

    Article  CAS  Google Scholar 

  59. Shirzad-Siboni M, Jonidi-Jafari A, Farzadkia M, Esrafili A, Gholami M (2017) Enhancement of photocatalytic activity of Cu-doped ZnO nanorods for the degradation of an insecticide: kinetics and reaction pathways. J Environ Manag 186:1–11. https://doi.org/10.1016/j.jenvman.2016.10.049.

    Article  CAS  Google Scholar 

  60. Putri NA, Fauzia V, Iwan S, Roza L, Umar AA, Budi S (2018) Mn-doping-induced photocatalytic activity enhancement of ZnO nanorods prepared on glass substrates. Appl Surf Sci 439:285–297. https://doi.org/10.1016/j.apsusc.2017.12.246.

    Article  CAS  Google Scholar 

  61. Shah AA et al. (2020) Facile synthesis of copper doped ZnO nanorods for the efficient photo degradation of methylene blue and methyl orange. Ceram Int 46(8):9997–10005. https://doi.org/10.1016/j.ceramint.2019.12.024.

    Article  CAS  Google Scholar 

  62. Han C, Duan L, Zhao X, Hu Z, Niu Y, Geng W (2019) Effect of Fe doping on structural and optical properties of ZnO films and nanorods. J Alloy Compd 770:854–863. https://doi.org/10.1016/j.jallcom.2018.08.217.

    Article  CAS  Google Scholar 

  63. Tosun M, Senol SD, Arda L (2020) Effect of Mn/Cu co-doping on the structural, optical and photocatalytic properties of ZnO nanorods. J Mol Struct 1212:128071. https://doi.org/10.1016/j.molstruc.2020.128071

    Article  CAS  Google Scholar 

  64. Khatamian M, Khandar AA, Divband B, Haghighi M, Ebrahimiasl S (2012) Heterogeneous photocatalytic degradation of 4-nitrophenol in aqueous suspension by Ln (La 3+, Nd 3+ or Sm 3+) doped ZnO nanoparticles. J Mol Catal A: Chem 365:120–127. https://doi.org/10.1016/j.molcata.2012.08.018.

    Article  CAS  Google Scholar 

  65. Ranjith Kumar D, Ranjith KS, Rajendra Kumar RT (2018) Structural, optical, photocurrent and solar driven photocatalytic properties of vertically aligned samarium doped ZnO nanorod arrays. Optik 154:115–125. https://doi.org/10.1016/j.ijleo.2017.10.004.

    Article  CAS  Google Scholar 

  66. Meshram SP, Adhyapak PV, Pardeshi SK, Mulla IS, Amalnerkar DP (2017) Sonochemically generated cerium doped ZnO nanorods for highly efficient photocatalytic dye degradation. Powder Technol 318(Aug):120–127. https://doi.org/10.1016/j.powtec.2017.05.044.

    Article  CAS  Google Scholar 

  67. Korake PV, Kadam AN, Garadkar KM (2014) Photocatalytic activity of Eu3+-doped ZnO nanorods synthesized via microwave assisted technique. J Rare Earths 32(4):306–313. https://doi.org/10.1016/S1002-0721(14)60072-7

    Article  CAS  Google Scholar 

  68. Korake PV, Dhabbe RS, Kadam AN, Gaikwad YB, Garadkar KM (2014) Highly active lanthanum doped ZnO nanorods for photodegradation of metasystox. J Photochem Photobiol B: Biol 130:11–19. https://doi.org/10.1016/j.jphotobiol.2013.10.012.

    Article  CAS  Google Scholar 

  69. Liu X, Fu F, Zuo H (2016) Lanthanum ions-induced synthesis of ZnO nanostructures from zinc foil: Morphology change and photocatalytic activity. Surf Interfaces 1–3:29–34. https://doi.org/10.1016/j.surfin.2016.07.006.

    Article  Google Scholar 

  70. Luo Y et al. (2015) Fabrication and photocatalytic properties of Gd-doped ZnO nanoparticle-assembled nanorods. Mater Lett 149:70–73. https://doi.org/10.1016/j.matlet.2015.02.126.

    Article  CAS  Google Scholar 

  71. Lu F, Wang J, Chang Z, Zeng J (2019) Uniform deposition of Ag nanoparticles on ZnO nanorod arrays grown on polyimide/Ag nanofibers by electrospinning, hydrothermal, and photoreduction processes. Mater Des 181:108069. https://doi.org/10.1016/j.matdes.2019.108069

    Article  CAS  Google Scholar 

  72. Zhai H, Liu X, Wang Z, Liu Y, Zheng Z, Qin X, Zhang X, Wang P, Huang B (2020) ZnO nanorod decorated by Au-Ag alloy with greatly increased activity for photocatalytic ethylene oxidation. Chin J Catal 41:1613–1621. https://doi.org/10.1016/S1872-2067(19)63473-X

    Article  CAS  Google Scholar 

  73. Gavade NL, Kadam AN, Babar SB, Gophane AD, Garadkar KM, Lee SW (2020) Biogenic synthesis of gold-anchored ZnO nanorods as photocatalyst for sunlight-induced degradation of dye effluent and its toxicity assessment. Ceram Int 46:11317–11327. https://doi.org/10.1016/j.ceramint.2020.01.161

    Article  CAS  Google Scholar 

  74. Sakir M, Salem S, Sanduvac ST, Sahmetlioglu E, Sarp G, Onses MS, Yilmaz E (2020) Photocatalytic green fabrication of Au nanoparticles on ZnO nanorods modified membrane as flexible and photocatalytic active reusable SERS substrates. Colloids Surf A Physicochem Eng Asp 585:124088. https://doi.org/10.1016/j.colsurfa.2019.124088

    Article  CAS  Google Scholar 

  75. Baruah B, Downer L, Agyeman D (2019) Fabric-based composite materials containing ZnO-NRs and ZnO-NRs-AuNPs and their application in photocatalysis. Mater Chem Phys 231:252–259. https://doi.org/10.1016/j.matchemphys.2019.04.006

    Article  CAS  Google Scholar 

  76. Young SJ, Chu YL (2020) Platinum nanoparticle-decorated ZnO nanorods improved the performance of methanol gas sensor. J Electrochem Soc 167:147508. https://doi.org/10.1149/1945-7111/abc4be

    Article  CAS  Google Scholar 

  77. Wu Z, Xue Y, Wang H, Wu Y, Yu H (2014) ZnO nanorods/Pt and ZnO nanorods/Ag heteronanostructure arrays with enhanced photocatalytic degradation of dyes. RSC Adv 4:59009–59016. https://doi.org/10.1039/C4RA10753E

    Article  CAS  Google Scholar 

  78. Alahmadi N, Amin MS, Mohamed RM (2020) Superficial visible-light-responsive Pt@ZnO nanorods photocatalysts for effective remediation of ciprofloxacin in water. J Nanopart Res 22:1–14. https://doi.org/10.1007/s11051-020-04968-7

    Article  CAS  Google Scholar 

  79. Arifin M, Roza L, Fauzia V (2019) Bayberry-like Pt nanoparticle decorated ZnO nanorods for the photocatalytic application. Results Phys 15:102678. https://doi.org/10.1016/j.rinp.2019.102678

    Article  Google Scholar 

  80. Chakraborty M, Thangavel R, Asokan K (2018) N doped ZnO and ZnO nanorods based p-n homojunction fabricated by ion implantation. AIP Conf Proc 1953:050047. https://doi.org/10.1063/1.5032702

    Article  CAS  Google Scholar 

  81. Wang M, Ren F, Zhou J, Cai G, Cai L, Hu Y, Wang D, Liu Y, Guo L, Shen S (2015) N doping to ZnO nanorods for photoelectrochemical water splitting under visible light: engineered impurity distribution and terraced band structure. Sci Rep 5:12925. https://doi.org/10.1038/srep12925

    Article  CAS  Google Scholar 

  82. Sanchez L, Castillo C, Cruz W, Yauri B, Sosa M, Luyo C, Candal R, Ponce S, Rodriguez JM (2019) ZnO (Ag-N) nanorods films optimized for photocatalytic water purification. Coatings 9:767. https://doi.org/10.3390/coatings9110767

    Article  CAS  Google Scholar 

  83. Ismail AS, Mamat MH, Sin NDMD, Malek MF, Saidi SA, Yusoff MM, Rusop M (2016) Structural and optical properties of N-doped ZnO nanorod arrays prepared using sol-gel immersion method. 2016 IEEE Student Conference on Research and Development (SCOReD) 1:1–6. https://doi.org/10.1109/SCORED.2016.7810067

  84. Panda NR, Acharya BS, Nayak P (2013) Sonochemical synthesis of nitrogen doped ZnO nanorods: Effect of anions on growth and optical properties. J Mater Sci Mater Electron 24:4043–4049. https://doi.org/10.1007/s10854-013-1359-z

    Article  CAS  Google Scholar 

  85. Duan X, Chen G, Gao P, Jin W, Ma X, Yin Y, Guo L, Ye H, Zhu Y, Yu J, Wu Y (2017) Crystallography facet tailoring of carbon doped ZnO nanorods via selective etching. Appl Surf Sci 406:186–191. https://doi.org/10.1016/j.apsusc.2017.02.119

    Article  CAS  Google Scholar 

  86. Perillo PM, Atia MN (2017) C-doped ZnO nanorods for photocatalytic degradation of p-aminobenzoic acid under sunlight. Nano-Struct Nano-Objects 10:125–130. https://doi.org/10.1016/j.nanoso.2017.04.001

    Article  CAS  Google Scholar 

  87. Mirzaeifard Z, Shariatinia Z, Jourshabani M, Rezaei Darvishi SM (2020) ZnO photocatalyst revisited: effective photocatalytic degradation of emerging contaminants using S-doped ZnO nanoparticles under visible light radiation. Ind Eng Chem Res 59:15894–15911. https://doi.org/10.1021/acs.iecr.0c03192

    Article  CAS  Google Scholar 

  88. Khan A, Ahmed MI, Adam A, Azad AM, Qamar M (2017) A novel fabrication methodology for sulfur-doped ZnO nanorods as an active photoanode for improved water oxidation in visible-light regime. Nanotechnology 28:055602. https://doi.org/10.1088/1361-6528/aa51b6

    Article  CAS  Google Scholar 

  89. Hsu MH, Chang CJ (2014) S-doped ZnO nanorods on stainless-steel wire mesh as immobilized hierarchical photocatalysts for photocatalytic H2 production. Int J Hydrog Energy 39:16524–16533. https://doi.org/10.1016/j.ijhydene.2014.02.110

    Article  CAS  Google Scholar 

  90. Zhang X, Yan X, Zhao J, Qin Z, Zhang Y (2009) Structure and photoluminescence of S-doped ZnO nanorod arrays. Mater Lett 63:444–446. https://doi.org/10.1016/j.matlet.2008.11.006

    Article  CAS  Google Scholar 

  91. Lv Y, Liu J, Zhang Z, Zhang W, Wang A, Tian F, Zhao W, Yan J (2021) Green synthesis of CuO nanoparticles-loaded ZnO nanowires arrays with enhanced photocatalytic activity. Mater Chem Phys 267:124703. https://doi.org/10.1016/j.matchemphys.2021.124703

    Article  CAS  Google Scholar 

  92. Wang X, Liu G, Lu GQ, Cheng HM (2010) Stable photocatalytic hydrogen evolution from water over ZnO-CdS core-shell nanorods. Int J Hydrog Energy 35:8199–8205. https://doi.org/10.1016/j.ijhydene.2009.12.091

    Article  CAS  Google Scholar 

  93. Liu X, Cao J, Feng B, Yang L, Wei M, Zhai H, Liu H, Sui Y, Yang J, Liu Y (2015) Facile fabrication and photocatalytic properties of ZnO nanorods/ZnSe nanosheets heterostructure. Superlattices Microstruct 83:447–458. https://doi.org/10.1016/j.spmi.2015.03.051

    Article  CAS  Google Scholar 

  94. Yusoff ARBM, Dai L, Cheng HM, Liu J (2015) Graphene based energy devices. Nanoscale 7:6881–6882. https://doi.org/10.1039/C5NR90062J

    Article  Google Scholar 

  95. Shen Y, Fang Q, Chen B (2015) Environmental applications of three-dimensional graphene-based macrostructures: Adsorption, transformation, and detection. Environ Sci Technol 49:67–84. https://doi.org/10.1021/es504421y

    Article  CAS  Google Scholar 

  96. Phiri J, Gane P, Maloney TC (2015) General overview of graphene: Production, properties and application in polymer composites. Mater Sci Eng B Solid State Mater Adv Technol 215:9–28. https://doi.org/10.1016/j.mseb.2016.10.004

    Article  CAS  Google Scholar 

  97. Liao L, Peng H, Liu Z (2014) Chemistry makes graphene beyond graphene. J Am Chem Soc 136:12194–12200. https://doi.org/10.1021/ja5048297

    Article  CAS  Google Scholar 

  98. Li X, Shen R, Ma S, Chen X, Xie J (2018) Graphene-based heterojunction photocatalysts. Appl Surf Sci 430:53–107. https://doi.org/10.1016/j.apsusc.2017.08.194

    Article  CAS  Google Scholar 

  99. Li X, Yu J, Wageh S, Al-Ghamdi AA, Xie J (2016) Graphene in photocatalysis: a review. Small 12:6640–6696. https://doi.org/10.1002/smll.201600382

    Article  CAS  Google Scholar 

  100. Anand K, Singh O, Singh RC (2014) Different strategies for the synthesis of graphene/ZnO composite and its photocatalytic properties. Appl Phys A 116:1141–1148. https://doi.org/10.1007/s00339-013-8198-x

    Article  CAS  Google Scholar 

  101. Boukhoubza I, Khenfouch M, Achehboune M, Mothudi BM, Zorkani I, Jorio A (2019) Graphene oxide/ZnO nanorods/graphene oxide sandwich structure: the origins and mechanisms of photoluminescence. J Alloy Compd 797:1320–1326. https://doi.org/10.1016/j.jallcom.2019.04.266

    Article  CAS  Google Scholar 

  102. Vessalli BA, Zito CA, Perfecto TM, Volanti DP, Mazon T (2017) ZnO nanorods/graphene oxide sheets prepared by chemical bath deposition for volatile organic compounds detection. J Alloy Compd 696:996–1003. https://doi.org/10.1016/j.jallcom.2016.12.075

    Article  CAS  Google Scholar 

  103. Honda M, Okumura R, Ichikawa Y (2016) Direct growth of densely aligned ZnO nanorods on graphene. Jpn J Appl Phys 55:080301. https://doi.org/10.7567/JJAP.55.080301

    Article  CAS  Google Scholar 

  104. Dang VQ, Trung TQ, Kim DI, Duy LT, Hwang B-U, Lee DW, Kim BY, Toan LD, Lee NE (2015) Ultrahigh Responsivity in Graphene-ZnO Nanorod Hybrid UV Photodetector. Small 11:3054–3065. https://doi.org/10.1002/smll.201403625

    Article  CAS  Google Scholar 

  105. Boukhoubza I, Khenfouch M, Achehboune M, Mouthudi B, Zorkani I, Jorio A (2018) Synthesis and characterization of Graphene oxide/Zinc oxide nanorods sandwich structure. J Phys Confer Ser 984:012005. https://doi.org/10.1088/1742-6596/984/1/012005

    Article  CAS  Google Scholar 

  106. Yu TY, Wei MR, Weng CY, Su WM, Lu CC, Chen YT, Chen H (2017) Modulating the size of ZnO nanorods on SiO2 substrates by incorporating reduced graphene oxide into the seed layer solution. AIP Adv 7:0651. 10.10.1063/1.4986759

    Google Scholar 

  107. Mohammed AAA, Suriani AB, Jabur AR (2018) The enhancement of UV sensor response by zinc oxide nanorods/reduced graphene oxide bilayer nanocomposites film. J Phys Confer Ser 1003:012070. https://doi.org/10.1088/1742-6596/1003/1/012070

    Article  CAS  Google Scholar 

  108. Rokhsat E, Akhavan O (2016) Improving the photocatalytic activity of graphene oxide/ZnO nanorod films by UV irradiation. Appl Surf Sci 371:590–595. https://doi.org/10.1016/j.apsusc.2016.02.222

    Article  CAS  Google Scholar 

  109. Zou R, He G, Xu K, Liu Q, Zhang Z, Hu J (2013) ZnO nanorods on reduced graphene sheets with excellent field emission, gas sensor and photocatalytic properties. J Mater Chem A 1:8445–8452. https://doi.org/10.1039/C3TA11490B

    Article  CAS  Google Scholar 

  110. Ramos PG, Flores E, Luyo C, Sánchez LA, Rodriguez J (2019) Fabrication of ZnO-RGO nanorods by electrospinning assisted hydrothermal method with enhanced photocatalytic activity. Mater Today Commun 19:407–412. https://doi.org/10.1016/j.mtcomm.2019.03.010

    Article  CAS  Google Scholar 

  111. Ramos PG, Luyo C, Sánchez LA, Gomez ED, Rodriguez JM (2020) The spinning voltage influence on the growth of ZnO-rGO nanorods for photocatalytic degradation of methyl orange dye. Catalysts 10:660. https://doi.org/10.3390/catal10060660

    Article  CAS  Google Scholar 

  112. Rodríguez J, Feuillet G, Donatini F, Onna D, Sanchez L, Candal R, Marchi MC, Bilmes SA (2015) Influence of the spray pyrolysis seeding and growth parameters on the structure and optical properties of ZnO nanorod arrays. Mater Chem Phys 151:378–384. https://doi.org/10.1016/j.matchemphys.2014.12.013. C0handezon F

    Article  CAS  Google Scholar 

  113. Majumder T, Mondal SP (2019) Graphene quantum dots as a green photosensitizer with carbon-doped ZnO nanorods for quantum-dot-sensitized solar cell applications. Bull Mater Sci 42:1–5. https://doi.org/10.1007/s12034-019-1755-y

    Article  CAS  Google Scholar 

  114. Rahimi K, Yazdani A, Ahmadirad M (2018) Facile preparation of zinc oxide nanorods surrounded by graphene quantum dots both synthesized via separate pyrolysis procedures for photocatalyst application. Mater Res Bull 98:148–154

    Article  CAS  Google Scholar 

  115. Haque E, Kim J, Malgras V, Reddy KR, Ward AC, You J, Bando Y, Hossain MDSA, Yamauchi Y (2018) Recent advances in graphene quantum dots: synthesis, properties, and applications. Small Methods 2:1800050. https://doi.org/10.1002/smtd.201800050

    Article  CAS  Google Scholar 

  116. Zheng XT, Ananthanarayanan A, Luo KQ, Chen P (2014) Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications. Small 11:1620–1636. https://doi.org/10.1002/smll.201402648

    Article  CAS  Google Scholar 

  117. Rahimi K, Yazdani A (2018) Ethanol-sensitive nearly aligned ZnO nanorod thin films covered by graphene quantum dots. Mater Lett 228:65–67. https://doi.org/10.1016/j.matlet.2018.05.137

    Article  CAS  Google Scholar 

  118. Rahimi K, Yazdani A, Ahmadirad M (2018) Graphene quantum dots enhance UV photoresponsivity and surface-related sensing speed of zinc oxide nanorod thin films. Mater Des 140:222–230. https://doi.org/10.1016/j.matdes.2017.12.010

    Article  CAS  Google Scholar 

  119. Kathalingam A, Ajmal HMS, Vikraman D, Kim SD, Park HC, Kim HS (2021) Graphene quantum dots-wrapped vertically aligned zinc oxide nanorods arrays for photosensing application. J Alloy Compd 853:157025. https://doi.org/10.1016/j.jallcom.2020.157025

    Article  CAS  Google Scholar 

  120. Rahimi K, Yazdani A (2020) Incremental photocatalytic reduction of graphene oxide on vertical ZnO nanorods for ultraviolet sensing. Mater Lett 262:127078. https://doi.org/10.1016/j.matlet.2018.05.137

    Article  CAS  Google Scholar 

  121. Anoop G, Panwar V, Kim TY, Jo JY (2017) Resistive switching in ZnO nanorods/graphene oxide hybrid multilayer structures. Adv Electron Mater 3:1600418. https://doi.org/10.1002/aelm.201600418

    Article  CAS  Google Scholar 

  122. Kang W, Jimeng X, Xitao W (2016) The effects of ZnO morphology on photocatalytic efficiency of ZnO/RGO nanocomposites. Appl Surf Sci 360:270–275. https://doi.org/10.1016/j.apsusc.2015.10.190

    Article  CAS  Google Scholar 

  123. Fang D, Li X, Liu H, Xu W, Jiang M, Li W, Fan X (2017) BiVO4-rGO with a novel structure on steel fabric used as high-performance photocatalysts. Sci Rep. 7(7979):1. https://doi.org/10.1038/s41598-017-07342-

    Article  Google Scholar 

  124. Wu H, Lin S, Chen C, Liang W, Liu X, Yang H (2016) A new ZnO/rGO/polyaniline ternary nanocomposite as photocatalyst with improved photocatalytic activity. Mater Res Bull 83:434–441. https://doi.org/10.1016/j.materresbull.2016.06.036

    Article  CAS  Google Scholar 

  125. Wang Q, Cai C, Wang M, Guo Q, Wang B, Luo W, Wang Y, Zhang C, Zhou L, Zhang D, Tong Z, Liu Y, Chen J (2018) Efficient photocatalytic degradation of Malachite Green in seawater by the hybrid of zinc-oxide nanorods grown on three-dimensional (3D) reduced graphene oxide(RGO)/Ni foam. Materials 11:1004. https://doi.org/10.3390/ma11061004

    Article  CAS  Google Scholar 

  126. Umukoro EH, Peleyeju MG, Ngila JC, Arotiba OA (2016) Photoelectrochemical degradation of orange II dye in wastewater at a silver-zinc oxide/reduced graphene oxide nanocomposite photoanode. RSC Adv 6:52868–52877. https://doi.org/10.1039/C6RA04156F

    Article  CAS  Google Scholar 

  127. Moussa H, Girot E, Mozet K, Alem H, Medjahdi G, Schneider R (2016) ZnO rods/reduced graphene oxide composites prepared via a solvothermal reaction for efficient sunlight-driven photocatalysis. Appl Catal B 185:11–21. https://doi.org/10.1016/j.apcatb.2015.12.007

    Article  CAS  Google Scholar 

  128. Khurshid F, Jeyavelan M, Hudson MSL, Nagarajan S (2019) Ag-doped ZnO nanorods embedded reduced graphene oxide nanocomposite for photo-electrochemical applications. R Soc Open Sci 6:181764. https://doi.org/10.1098/rsos.181764

    Article  CAS  Google Scholar 

  129. Minitha CR, Lalitha M, Jeyachandran YL, Senthilkumar L, Rajendra Kumar RT (2017) Adsorption behaviour of reduced graphene oxide towards cationic and anionic dyes: co-action of electrostatic and π – π interactions. Mater Chem Phys 194:243–252. https://doi.org/10.1016/j.matchemphys.2017.03.048

    Article  CAS  Google Scholar 

  130. Mao B, Sidhureddy B, Thiruppathi AR, Wood PC, Chen A (2020) Efficient dye removal and separation based on graphene oxide nanomaterials. N J Chem 44:4519–4528. https://doi.org/10.1039/C9NJ05895H

    Article  CAS  Google Scholar 

  131. Men X, Chen H, Chang K, Fang X, Wu C, Qin W, Yin S (2016) Three-dimensional free-standing ZnO/graphene composite foam for photocurrent generation and photocatalytic activity. Appl Catal B 187:367–374. https://doi.org/10.1016/j.apcatb.2016.01.052

    Article  CAS  Google Scholar 

  132. Xie M, Zhang D, Wang Y, Zhao Y (2020) Facile fabrication of ZnO nanorods modified with RGO for enhanced photodecomposition of dyes. Colloids Surf A Physicochem Eng Asp 603:125247. https://doi.org/10.1016/j.colsurfa.2020.125247

    Article  CAS  Google Scholar 

  133. Yam KM, Guo N, Jiang Z, Li S, Zhang C (2020) Graphene-based heterogeneous catalysis: Role of graphene. Catalysts 10:53. https://doi.org/10.3390/catal10010053

    Article  CAS  Google Scholar 

  134. Ghanem AF, Badawy AA, Mohram ME, Abdel Rehim MH (2020) Synergistic effect of zinc oxide nanorods on the photocatalytic performance and the biological activity of graphene nano sheets. Heliyon 6:e03283. https://doi.org/10.1016/j.heliyon.2020.e03283

    Article  Google Scholar 

  135. Wang J, Wang S (2020) Reactive species in advanced oxidation processes: formation, identification and reaction mechanism. Chem Eng J 401:126158. https://doi.org/10.1016/j.cej.2020.126158

    Article  CAS  Google Scholar 

  136. Qi K, Cheng B, Yu J, Ho W (2017) Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J Alloy Compd 727:792–820. https://doi.org/10.1016/j.jallcom.2017.08.142

    Article  CAS  Google Scholar 

  137. Raizada P, Sudhaik A, Singh P (2019) Photocatalytic water decontamination using graphene and ZnO coupled photocatalysts: a review. Mater Sci Energy Technol 2:509–525. https://doi.org/10.1016/j.mset.2019.04.007

    Article  Google Scholar 

  138. Abdolhosseinzadeh S, Asgharzadeh H, Sadighikia S, Khataee A (2016) UV-assisted synthesis of reduced graphene oxide–ZnO nanorod composites immobilized on Zn foil with enhanced photocatalytic performance. Res Chem Intermed 42:4479–4496. https://doi.org/10.1007/s11164-015-2291-z

    Article  CAS  Google Scholar 

  139. Karimizadeh N, Babamoradi M, Azimirad R, Khajeh M (2018) Synthesis of three-dimensional multilayer graphene foam/ZnO nanorod composites and their photocatalyst application. J Electron Mater 47:5452–5457. https://doi.org/10.1007/s11664-018-6427-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work described in this review was financially supported by the projects CONCYTEC under the contract numbers Nos 032-2019-FONDECYT-BM-INC.INV, 120-2018-FONDECYT, J015-2016-FONDECYT and 08-FONDECYT-BM-IADT-MU-2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan M. Rodriguez.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos, P.G., Sánchez, L.A. & Rodriguez, J.M. A review on improving the efficiency of photocatalytic water decontamination using ZnO nanorods. J Sol-Gel Sci Technol 102, 105–124 (2022). https://doi.org/10.1007/s10971-021-05707-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05707-7

Keywords

Navigation