Skip to main content
Log in

Microcalorimetric study of the growth of Enterococcus faecalis, Pseudomonas aeruginosa and their mixtures in an enriched culture medium

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Microcalorimetry is a highly sensitive experimental technique that allows to determine the energy released by any process or transformation. In the field of medicine, it is interesting for investigations of microbial processes. The interaction relationship between Enterococcus faecalis and Pseudomonas aeruginosa was researched using a Tian–Calvet calorimeter equipped with two stainless steel cells (reference and experimental). Three samples from both bacteria were prepared in the following proportions: 20 + 80 % (0.2 mL E. faecalis + 0.8 mL P. aeruginosa), 50 + 50 % (0.5 mL E. faecalis + 0.5 mL P. aeruginosa) and 80 + 20 % (0.8 mL E. faecalis + 0.2 mL P. aeruginosa). Experiments were carried out at a concentration of 103 CFU mL−1 and a constant temperature of 309.65 K. Recording the heat voltage difference versus time, the growth curves for E. faecalis, P. aeruginosa and their mixtures were obtained. The differences in shape of curves of single microorganisms and their mixtures were compared. Also, the thermokinetic parameters of single microorganisms and their mixtures (growth constant, generation time, detection time and amount of heat released) were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Braissant O, Wirz D, Göpfert B, Daniels AU. Use of isothermal microcalorimetry to monitor microbial activities. FEMS Microbiol Lett. 2010;303:1–8.

    Article  CAS  Google Scholar 

  2. Calvet E, Prat H. Récents Progrès in Microcalorimétrie. Paris: Éditorial Dunod; 1958.

    Google Scholar 

  3. Lago N, Legido JL, Paz-Andrade MI, Arias I, Casás LM. Microcalorimetric study of the growth and metabolism of Pseudomonas aeruginosa. J Therm Anal Calorim. 2011;105:651–5.

    Article  CAS  Google Scholar 

  4. Braissant O, Wirz D, Göpfert B, Daniels AU. Biomedical use of isothermal microcalorimeters. Sensors. 2010;10:9369–83.

    Article  CAS  Google Scholar 

  5. James AM, editor. Calorimetry past, present and future. In: Thermal and energetic studies of cellular biological systems. Bristol: Wright; 1987. pp. 1–13.

  6. Zaharia DC, Iancu C, Steriade AT, Muntean AA, Balint O, Popa VT, et al. MicroDSC study of Staphylococcus epidermidis growth. BMC Microbiol. 2010;10:322.

    Article  Google Scholar 

  7. Rodriguez D, Daniels AU, Urrusti JL, Wirz D, Braissant O. Evaluation of a low-cost calorimetric approach for rapid detection of tuberculosis and other mycobacteria in culture. J Appl Microbiol. 2011;111(4):1016–24.

    Article  CAS  Google Scholar 

  8. Rivero NL, Legido JL, Santos IA, Casás LM. Comparative study of microcalorimetric behavior of Escherichia coli, Proteus mirabilis and Klebsiella pneumoniae. Pol J Microbiol. 2012;61(3):199–204.

    Google Scholar 

  9. Bonkat G, Braissant O, Malte R, Solokhina A, Widmer AF, Frei R, et al. Standardization of isothermal microcalorimetry in urinary tract infection detection by using artificial urine. World J Urol. 2013;31(3):553–7.

    Article  Google Scholar 

  10. O´Neill MAA, Vine GJ, Beezer AE, Bishop AH, Hadgraft J, Labetoulle C, et al. Antimicrobial properties of silver-containing wound dressings: a microcalorimetric study. Int J Pharm. 2003;263(1–2):61–8.

    Article  Google Scholar 

  11. Trampuz A, Salzmann S, Antheaume J, Daniels AU. Microcalorimetry: a novel method for detection of microbial contamination in platelet products. Transfusion. 2007;47:1643–50.

    Article  Google Scholar 

  12. Tan MR, Ren YS, Yan D, Meng XH, Cheng LH, Qiu LL, et al. Detection of microorganisms in different growth states based on microcalorimetry. J Therm Anal Calorim. 2012;109(2):1069–75.

    Article  CAS  Google Scholar 

  13. Wang J, Cheng D, Zeng N, Xia H, Fu Y, Yan D, et al. Microcalorimetric study of the effect of Benzoinum and Styrax on the growth of Escherichia coli. Nat Prod Res. 2011;25(4):457–63.

    Article  CAS  Google Scholar 

  14. Li XF, Jin C, He J, Zhou J, Wang HT, Dai B, et al. Microcalorimetric investigation of the antibacterial activity of curcumin on Staphylococccus aureus coupled with multivariate analysis. J Therm Anal Calorim. 2012;109(1):395–402.

    Article  CAS  Google Scholar 

  15. Luo JY, Yang MH. Demethoxycurcumin: a potential antimicrobial agent. J Therm Anal Calorim. 2014;115(3):2331–8.

    Article  CAS  Google Scholar 

  16. Baldoni D, Steinhuber A, Zimmerli W, Trampuz A. In vitro activity of gallium maltolate against Staphyloccocci in logarithmic, stationary, and biofilm growth phases: comparison of conventional and calorimetric susceptibility testing methods. Antimicrob Agents Chemother. 2010;54:157–63.

    Article  CAS  Google Scholar 

  17. von Ah U, Wirz D, Daniels AU. Isothermal micro calorimetry—a new method for MIC determinations: results for 12 antibiotics and reference strains of E. coli and S. aureus. BMC Microbiol. 2009;. doi:10.1186/1471-2180-9-106.

    Google Scholar 

  18. Yang LN, Sun LX, Xu F, Zhang J, Zhao JN, Zhao ZB, et al. Inhibitory study of two cephalosporins on E. coli by microcalorimetry. J Therm Anal Calorim. 2010;100(2):589–92.

    Article  CAS  Google Scholar 

  19. Entenza JM, Bétrisey B, Manuel O, Giddey M, Sakwinska O, Laurent F, et al. Rapid detection of Staphylococcus aureus strains with reduced susceptibility to vancomycin by isothermal microcalorimetry. J Clin Microbiol. 2014;52(1):180–6.

    Article  CAS  Google Scholar 

  20. Braissant O, Chavanne P, de Wild M, Pieles U, Stevanovic S, Schumacher R, et al. Novel microcalorimetric assay for antibacterial activity of implant coatings: the cases of silver-doped hydroxyapatite and calcium hydroxide. J Biomed Mater Res B Appl Biomater. 2014;. doi:10.1002/jbm.b.33294.

    Google Scholar 

  21. Rivero NL, Soto JLL, Santos IA, Casás LM. Differentiation between Staphylococcus aureus and Staphylococcus epidermidis using microcalorimetry. Int J Thermophys. 2013;34:1039–48.

    Article  CAS  Google Scholar 

  22. von Ah U, Wirz D, Daniels AU. Rapid differentiation of methicillin-susceptible Staphylococcus aureus from methicillin-resistant S. aureus and MIC determinations by isothermal microcalorimetry. J Clin Microbiol. 2008;46(6):2083–7.

    Article  Google Scholar 

  23. Baldoni D, Hermann H, Frei R, Trampuz A, Steinhuber A. Perfomance of microcalorimetry for early detection of methicillin resistance in clinical isolates of Staphylococcus aureus. J Clin Microbiol. 2009;47(3):774–6.

    Article  Google Scholar 

  24. Vázquez C, Lago N, Legido JL, Arias I, Casás LM, Mato MM. Microcalorimetric study of the growth of Enterococcus faecalis, Klebsiella pneumoniae and their mixtures in an enriched culture medium. J Therm Anal Calorim. 2013;. doi:10.1007/s10973-013-3287-9.

    Google Scholar 

  25. Vázquez C, Lago N, Mato MM, Casás LM, Esarte L, Legido JL, Arias I. Microcalorimetric perfomance of the growth in culture of Escherichia coli, Proteus mirabilis and their mixtures in different proportions. J Therm Anal Calorim. 2014;. doi:10.1007/s10973-013-3535-z.

    Google Scholar 

  26. Engleberg NC, DiRita V, Dermody TS. Schaechter’s mechanisms of microbial disease. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2013.

    Google Scholar 

  27. Paz Andrade MI. Les Developements Recents de la Microcalorimetrie et de la Thermogenese. 1st ed. Paris: CRNS; 1967.

    Google Scholar 

  28. Verdes PV, Mato MM, Paz Andrade MI, Legido JL. Contribution to study of the thermodynamics properties of mixtures containing 2-methoxy-2-methylpropane, alkanol, alkane. J Chem Therm. 2014;73:224–31.

    Article  CAS  Google Scholar 

  29. Lago N, Legido JL, Casás LM, Arias I. Microcalorimetric study of the growth of Enterococcus faecalis in an enriched culture medium. J Therm Anal Calorim. 2012;108:665–70.

    Article  Google Scholar 

  30. Astasov-Frauenhoffer M, Braissant O, Hauser-Gerspach I, Daniels AU, Weiger R, Waltimo T. Isothermal microcalorimetry provides new insights into biofilm variability and dynamics. FEMS Microbiol Lett. 2012;337(1):31–7.

    Article  CAS  Google Scholar 

  31. Said J, Walker M, Parsons D, Stapleton P, Beezer AE, Gaisford S. Development of a flow system for studying biofilm formation on medical devices with microcalorimetry. Methods. 2014;. doi:10.1016/j.ymeth.2014.12.002.

    Google Scholar 

  32. Ma J, Qi WT, Yang LN, Yu WT, Xie YB, Wang W, et al. Microcalorimetric study on the growth and metabolism of microencapsulated microbial cell culture. J Microbiol Methods. 2007;68:172–7.

    Article  CAS  Google Scholar 

  33. Braissant O, Bonkat G, Wirz D, Bachmann A. Microbial growth and isothermal microcalorimetry: growth models and their application to microcalorimetric data. Thermochim Acta. 2013;555:64–71.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank María Perfecta Salgado Gonzalez and Sofia Baz Rodríguez for their collaboration with the technical measures. We are also thankful for the financial support provided by the Projects EM 2012/141, CN 2012/285, and “Agrupación Estratégica de Biomedicina (INBIOMED)” by “Xunta de Galicia” and the Project FIS 2011-23322 funded by Ministry of Science and Innovation of Spain. All these projects are co-financed with FEDER funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Vazquez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vazquez, C., Lago, N., Mato, M.M. et al. Microcalorimetric study of the growth of Enterococcus faecalis, Pseudomonas aeruginosa and their mixtures in an enriched culture medium. J Therm Anal Calorim 121, 463–468 (2015). https://doi.org/10.1007/s10973-015-4606-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4606-0

Keywords

Navigation