Skip to main content
Log in

Study of the growth of Enterococcus faecalis, Escherichia coli and their mixtures by microcalorimetry

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In a majority of environments, microbes live as interacting communities. Microbial communities are composed of a mix of microbes with often unknown functions. Polymicrobial diseases represent the clinical and pathological manifestations induced by the presence of multiple infectious agents. These diseases are difficult to diagnose and treat and usually are more severe than monomicrobial infections. The interaction relationship between Enterococcus faecalis and Escherichia coli was researched using a Calvet calorimeter. Three mixtures of both bacteria were prepared in the following proportions: 20 + 80 % (0.2 mL E. faecalis + 0.8 mL E. coli), 50 + 50 % (0.5 mL E. faecalis + 0.5 mL E. coli) and 80 + 20 % (0.8 mL E. faecalis + 0.2 mL E. coli). Experiments were carried out at concentration of 106 CFU mL−1 and a constant temperature of 309.65 K. The differences in shape of graph of E. faecalis, E. coli and their mixtures were compared. Also, the thermokinetic parameters such as detection time (t d), growth constant (k), generation time (G) and the amount of heat released (Q) were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pepper IL, Gerba CP, Gentry TJ. Environmental microbiology. 3rd ed. Amsterdam: Academic Press; 2015.

    Google Scholar 

  2. Ausina RV, Moreno GS. Tratado SEIMC de Enfermedades Infecciosas y Microbiología Clínica. 1st ed. Madrid: Médica Panamericana; 2006.

    Google Scholar 

  3. Murray JL, Connell JL, Stacy A, Turner KH, Whiteley M. Mechanisms of synergy in polymicrobial infections. J Microbiol. 2014;52(3):188–99.

    Article  Google Scholar 

  4. Brogden KA, Guthmiller JM. Polymicrobial diseases. Washington (DC): ASM Press; 2002.

    Book  Google Scholar 

  5. Pavlović M, Nikolić J. Antimicrobial treatment of polymicrobial infections. Med Pregl. 2010;63(Suppl 1):37–46.

    Google Scholar 

  6. Brogden KA, Guthmiller JM, Taylor CE. Human polymicrobial infections. Lancet. 2005;365(9455):253–5.

    Article  Google Scholar 

  7. Peters BM, Jabra-Rizk MA, O’May GA, Costerton JW, Shirtliff ME. Polymicrobial interactions: impact on pathogenesis and human disease. Clin Microbiol. 2012;25(1):193–213.

    Article  Google Scholar 

  8. Dalton T, Dowd SE, Wolcott RD, Sun Y, Watters C, Griswold JA, Rumbaugh KP. An in vivo polymicrobial biofilm wound infection model to study interspecies interactions. PLoS One. 2011;6(11):e27317.

    Article  CAS  Google Scholar 

  9. Mastropaolo MD, Evans NP, Byrnes MK, Stevens AM, Robertson JL, Melville SB. Synergy in polymicrobial infections in a mouse model of type 2 diabetes. Infect Immun. 2005;73(9):6055–63.

    Article  CAS  Google Scholar 

  10. Bakaletz LO. Developing animal models for polymicrobial diseases. Nat Rev Microbiol. 2004;2(7):552–68.

    Article  CAS  Google Scholar 

  11. Watrous J, Roach P, Alexandrov T, Heath BS, Yang JY, Kersten RD, et al. Mass spectral molecular networking of living microbial colonies. Proc Natl Acad Sci USA. 2012;109(26):E1743–52.

    Article  CAS  Google Scholar 

  12. Yang JY, Phelan VV, Simkovsky R, Watrous JD, Trial RM, Fleming TC, et al. Primer on agar-based microbial imaging mass spectrometry. J Bacteriol. 2012;194(22):6023–8.

    Article  CAS  Google Scholar 

  13. Wessel AK, Hmelo L, Parsek MR, Whiteley M. Going local: technologies for exploring bacterial microenvironments. Nat Rev Microbiol. 2013;11(5):337–48.

    Article  CAS  Google Scholar 

  14. Prescott LM, Harley JP, Klein DA. Microbiology. 5th ed. New York: Mc Graw Hill; 2004.

    Google Scholar 

  15. Greenwood D, Slack R, Peutherer J, Barer M. Medical microbiology: a guide to microbial infections: pathogenesis, immunity, laboratory diagnosis, and control. 17th ed. Edinburgh: Churchill Livingstone/Elsevier; 2007.

    Google Scholar 

  16. Braissant O, Wirz D, Göpfert B, Daniels AU. Use of isothermal microcalorimetry to monitor microbial activities. FEMS Microbiol Lett. 2010;303:1–8.

    Article  CAS  Google Scholar 

  17. Lago N, Legido JL, Paz-Andrade MI, Arias I, Casás LM. Microcalorimetric study of the growth and metabolism of Pseudomonas aeruginosa. J Therm Anal Calorim. 2011;105:651–5.

    Article  CAS  Google Scholar 

  18. Tan MR, Ren YS, Yan D, Meng XH, Cheng LH, Ll Qiu, et al. Detection of microorganisms in different states based on microcalorimetry. J Therm Anal Calorim. 2012;109(2):1069–75.

    Article  CAS  Google Scholar 

  19. Zaharia DC, Iancu C, Steriade AT, Muntean AA, Balint O, Popa VT, et al. MicroDSC study of Staphylococcus epidermidis growth. BMC Microbiol. 2010;10:322.

    Article  Google Scholar 

  20. Rivero NL, Soto JLL, Casás LM, Santos IA. Microcalorimetric study of the growth of Enterococcus faecalis in an enriched culture medium. J Therm Anal Calorim. 2012;108(2):665–70.

    Article  CAS  Google Scholar 

  21. Rivero NL, Legido JL, Santos IA, Casás LM. Comparative study of microcalorimetric behavior of Escherichia coli, Proteus mirabilis and Klebsiella pneumoniae. Pol J Microbiol. 2012;61(3):199–204.

    Google Scholar 

  22. Bonkat G, Bachman A, Solokhina A, Widmer AF, Frei R, Gasser T, et al. Growth of mycobacteria in urine determined by isothermal microcalorimetry: implications for urogenital tuberculosis and other mycobacterial infections. Urology. 2012;80(5):1163e9–12.

    Article  Google Scholar 

  23. Bonkat G, Braissant O, Malte R, Solokhina A, Widmer AF, Frei R, et al. Standardization of isothermal microcalorimetry in urinary tract detection by using artificial urine. World J Urol. 2013;31(3):553–7.

    Article  Google Scholar 

  24. Kong W-J, Xing X-Y, Xiao XH, Zhao Y-L, Wei J-H, Wang JB, et al. Effect of berberine on Escherichia coli, Bacillus subtilis, and their mixtures as determined by isothermal microcalorimetry. Appl Microbiol Biotechnol. 2012;96:503–10.

    Article  CAS  Google Scholar 

  25. Vázquez C, Lago N, Legido JL, Arias I, Casás LM, Mato MM. Microcalorimetric study of the growth of Enterococcus faecalis, Klebsiella pneumoniae and their mixtures in an enriched culture medium. J Therm Anal Calorim. 2013;113(3):1415–20.

    Article  Google Scholar 

  26. Vázquez C, Lago N, Mato MM, Casás LM, Esarte L, Legido JL, et al. Microcalorimetric performance of the growth in culture of Escherichia coli, Proteus mirabilis and their mixtures in different proportions. J Therm Anal Calorim. 2014;116(1):107–12.

    Article  Google Scholar 

  27. Wang F, Yao J, Yu C, Chen H, Yi Z. Investigating Pseudomonas putida-Candida humicola interactions as affected by chelate fe(III) in soil. Bull Environ Contam Toxicol. 2014;92(3):358–63.

    Article  CAS  Google Scholar 

  28. Vázquez C, Lago N, Mato MM, Legido JL, Esarte L. Microcalorimetric study of the growth of Enterococcus faecalis, Pseudomonas aeruginosa and their mixtures in an enriched culture medium. J Therm Anal Calorim. 2015;121(1):463–8.

    Article  Google Scholar 

  29. Murray PR, Rosenthal KS, Pfaller MA. Medical microbiology. 7th ed. Philadelphia: Elsevier Saunders; 2013.

    Google Scholar 

  30. Verdes PV, Mato MM, Paz Andrade MI, Legido JL. Contribution to study of the thermodynamics properties of mixtures containing 2-methoxy-2-methylpropane, alkanol, alkane. J Chem Therm. 2014;73:224–31.

    Article  CAS  Google Scholar 

  31. Ma J, Qi WT, Yang LN, Yu WT, Xie YB, Wang W, et al. Microcalorimetric study on the growth and metabolism of microencapsulated microbial cell culture. J Microbiol Methods. 2007;68:172–7.

    Article  CAS  Google Scholar 

  32. Braissant O, Bonkat G, Wirz D, Bachmann A. Microbial growth and isothermal microcalorimetry: growth models and their application to microcalorimetric data. Thermochim Acta. 2013;555:64–71.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank María Perfecta Salgado Gonzalez and Sofia Baz Rodríguez for their collaboration with the technical measures. We are also thankful for the financial support provided by the project EM 2012/141 by “Xunta de Galicia” and the project FIS 2011-23322 funded by Ministry of Science and Innovation of Spain. All these projects are co-financed with FEDER funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Vazquez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vazquez, C., Lago, N., Mato, M.M. et al. Study of the growth of Enterococcus faecalis, Escherichia coli and their mixtures by microcalorimetry. J Therm Anal Calorim 125, 739–744 (2016). https://doi.org/10.1007/s10973-015-5203-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5203-y

Keywords

Navigation