Skip to main content
Log in

Specific heat of mixtures of kaolin with sea water or distilled water for their use in thermotherapy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Mixtures of clays and waters of different mineralization have been used for thermotherapy therapies since ancient times. These mixtures are the basis of the most so-called thermal peloids, which are used for therapeutic purposes in the main thermal centres of the world. The thermal properties of peloids are very important to establish their applicability and determine whether they are appropriate for use in thermotherapy. This work focuses on the study of the behaviour of the specific heat capacity of different mixtures of kaolin with sea water or distilled water as a function of water concentration. Sea water is equivalent to high mineralized water, and distilled water corresponds to zero mineralization. Specific heat capacity was measured at atmospheric pressure and in the temperature interval from 293.15 to 317.15 K, using a commercial SETARAM BT 2.15 calorimeter. This device is based on the principle of Calvet calorimetry with temperature control. Furthermore, experimental results were compared to those obtained from mixtures with other clays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nadler SF, Weingand K, Kruse RJ. The physiologic basis and clinical applications of cryotherapy and thermotherapy for the pain practitioner. Pain Physician. 2004;7:395–9.

    Google Scholar 

  2. Van den Bosch M, Daniel B. MRI-guided radiofrequency ablation of breast cancer: preliminary clinical experience. J Magn Reson Imaging. 2008;27:204–8.

    Article  Google Scholar 

  3. Carrafiello G, Lagana D, Mangini M, Fontana F, Dionigi G, Boni L, Rovera F, Cuffari S, Fugazzola C. Microwave tumors ablation: principles, clinical applications and review of preliminary experiences. Int J Surg. 2008;6:65–9.

    Article  Google Scholar 

  4. Lewis MA, Staruch RM, Chopra R. Thermometry and ablation monitoring with ultrasound. Int J Hyperth. 2015;31:163–81.

    Article  Google Scholar 

  5. Stafford RJ, Fuentes D, Elliott A, Weinberg JS, Ahrar K. Laser-induced thermal therapy for tumor ablation. Crit Rev Biomed Eng. 2010;38:79–100.

    Article  Google Scholar 

  6. Jordan A, Scholz R, Maier-Hauff K, van Landeghem FK, Waldoefner N, Teichgraeber U, Pinkernelle J, Bruhn H, Neumann F, Thiesen B, von Deimling A, Felix R. The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J Neurooncol. 2006;78(1):7–14.

    Article  CAS  Google Scholar 

  7. Espejo-Antúnez L, Cardero-Durán MA, Garrido-Ardila EM, Torres-Piles S, Caro-Puértolas B. Clinical effectiveness of mud pack therapy in knee osteoarthritis. Rheumatology. 2013;52:659–68.

    Article  Google Scholar 

  8. Clijsen R, Taeymans J, Duquet W, Barel A, Clarys P. Changes of skin characteristics during and after local Parafango therapy as used in physiotherapy. Skin Res Technol. 2008;14:237–42.

    Article  Google Scholar 

  9. Abtin FG, Eradt J, Gutierrez AJ, Lee C, Fishbein MC, Suh RD. Radiofrequency ablation of lung tumors: imaging features of the postablation zone. Radiofraphics. 2012;32:947–69.

    Article  Google Scholar 

  10. Chu KF, Dupuy DE. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat Rev Cancer. 2014;14:199–208.

    Article  CAS  Google Scholar 

  11. Cramer H, Baumgarten C, Choi K, Lauche R, Saha FJ, Musial F, Dobos G. Thermotherapy self-treatment for neck pain relief-A randomized controlled trial. Eur J Integr Med. 2012;4:371–8.

    Article  Google Scholar 

  12. Koyuncu E, Ökmen BM, Özkuk K, Tasoglu Ö. The effectiveness of balneotherapy in chronic neck pain. Clin Rheumatol. 2016;35:2549–55.

    Article  Google Scholar 

  13. Viseras C, Aguzzi C, Cerzo P, López-Galindo A. Uses of clay minerals in semisolid health care and therapeutic products. Appl Clay Sci. 2007;36:37–50.

    Article  CAS  Google Scholar 

  14. Gomes C, Carretero MI, Pozo M, Maraver F, Cantista P, Armijo F, Legido JL, Teixeira F, Rautureau M, Delgado R. Peloids and pelotherapy: historical evolution, classification and glossary. Appl Clay Sci. 2013;75:28–38.

    Article  Google Scholar 

  15. Knorst-Fouran A, Casás LM, Legido JL, Coussine C, Bessières D, Plantier F, Lagière J, Dubourg K. Influence of dilution on the thermophysical properties of Dax peloid (TERDAX®). Thermochim Acta. 2012;539:34–8.

    Article  CAS  Google Scholar 

  16. Rebelo M, Viseras C, Lopez-Galindo A, Rocha F, da Silva EF. Rheological and thermal characterization of peloids made of selected Portuguese geological materials. Appl Clay Sci. 2011;52:219–27.

    Article  CAS  Google Scholar 

  17. Carretero MI, Pozo M, Legido JL, Fernández-González MV, Delgado R, Gómez I, Armijo F, Maraver F. Assessment of three Spanish clays for their use in pelotherapy. Appl Clay Sci. 2014;99:131–43.

    Article  CAS  Google Scholar 

  18. Karakaya M, Karakaya N, Sarioglan S, Koral M. Some properties of thermal muds of some spas in Turkey. Appl Clay Sci. 2010;48:531–7.

    Article  Google Scholar 

  19. da Silva PSC, Torrecilha JK, Gouvea PFdM, Máduar MF, de Oliveira SMB, Scapin MA. Chemical and radiological characterization of Peruíbe Black Mud. Appl Clay Sci. 2015;118:221–30.

    Article  Google Scholar 

  20. Legido JL, Medina C, Mourelle ML, Carretero MI, Pozo M. Comparative study of the cooling rates of bentonite, sepiolite and common clays for their use in pelotherapy. Appl Clay Sci. 2007;36:148–60.

    Article  CAS  Google Scholar 

  21. Lewis J. Thermal properties of peloids. Part II. Arch Med Hydrol. 1935;13:56–7.

    Google Scholar 

  22. Ferrand T, Yvon J. Thermal properties of clay pastes for pelotherapy. Appl Clay Sci. 1991;6:21–38.

    Article  Google Scholar 

  23. Cara S, Carcangiu G, Paladino G, Palomba M, Tamanini M. The bentonites in pelotherapy: thermal properties of clay pastes from Sardinian (Italy). Appl Clay Sci. 2000;16:125–32.

    Article  CAS  Google Scholar 

  24. Beer AM, Grozeva A, Sagorchev P, Lukanov J. Comparative study of the thermal properties of mud and peat solutions applied in clinical practice. Biomed Tech. 2003;48:301–5.

    Article  CAS  Google Scholar 

  25. Veniale F, Barberis E, Carcagiu G, Morandi N, Setti M, Tamanini M, Tessier D. Formulation of muds for pelotherapy: effects of “maturation” by different mineral waters. Appl Clay Sci. 2004;25:135–48.

    Article  CAS  Google Scholar 

  26. Pozo M, Carretero MI, Maraver F, Pozo E, Gómez I, Armijo F, Martín Rubí JA. Composition and physico-chemical properties of peloids used in Spanish spas: a comparative study. Appl Clay Sci. 2013;83–84:270–9.

    Article  Google Scholar 

  27. Khiari I, Mefteh S, Sánchez-Espejo R, Cerezo P, Aguzzi C, López-Galindo A, Jamoussi F, Viseras C. Study of traditional Tunisian medina clays used in therapeutic and cosmetic mud-packs. Appl Clay Sci. 2014;101:141–8.

    Article  CAS  Google Scholar 

  28. Sánchez-Espejo R, Cerezo P, Abuzzi C, López-Galindo A, Machado J, Viseras C. Physicochemical and in vitro cation release relevance of therapeutic muds “maturation”. Appl Clay Sci. 2015;116:1–7.

    Article  Google Scholar 

  29. Armijo F, Maraver F, Pozo M, Carretero MI, Armijo O, Fernández-Torán MA, Fernádez-González MV, Corvillo I. Thermal behaviour of clays and clay-water mixtures for pelotherapy. Appl Clay Sci. 2016;126:50–6.

    Article  CAS  Google Scholar 

  30. Karakaya MC, Karakaya N, Vural HC. Peloids and clay minerals for their use in pelotherapy. Geomaterials. 2016;6:79–90.

    Article  Google Scholar 

  31. Glavas N, Mourelle ML, Gómez CP, Legido JL, Smuc NR, Dolenec M, Kovac N. The mineralogical, geochemical, and thermophysical characterization of healing saline mud for use in peltherapy. Appl Clay Sci. 2016;. doi:10.1016/j.clay.2016.09.013.

    Google Scholar 

  32. Casás LM, Pozo M, Gómez CP, Pozo E, Bessières LD, Plantier F, Legido JL. Thermal behavior of mixtures of bentonitic clay and saline solutions. Appl Clay Sci. 2013;72:18–25.

    Article  Google Scholar 

  33. Caridad V, Ortiz de Zárate JM, Khayet M, Legido JL. Thermal conductivity and density of clay pastes at various water contents for pelotherapy use. Appl Clay Sci. 2014;93:23–7.

    Article  Google Scholar 

  34. Casás LM, Legido JL, Pozo M, Mourelle L, Plantier F, Bessières D. Specific heat of mixtures of bentonitic clay with sea water or distilled water for their use in thermotherapy. Thermochim Acta. 2011;524:68–73.

    Article  Google Scholar 

  35. Casás LM, Plantier F, Piñeiro MM, Legido JL, Bessières D. Calibration of a low temperature calorimeter and application in the determination of isobaric heat capacity of 2-propanol. Thermochim Acta. 2010;507:123–6.

    Article  Google Scholar 

  36. Skauge A, Fuller N, Yan H, Cassis R, Srinivasan NS, Hepler LG. Specific heat capacities of minerals form oil sands and heavy oil deposits. Thermochim Acta. 1983;68:291–6.

    Article  CAS  Google Scholar 

  37. Robie RA, Hemingway BS. Heat capacities of kaolinite from 7 to 380 K and of DMSO-intercalated kaolinite from 20 to 310 K. The entropy of kaolinite AlzSizOs(OH)4. Clays Clay Miner. 1991;39(4):362–8.

    Article  CAS  Google Scholar 

  38. Walpes DW, Walpes JS. A review and evaluation of specific heat capacities of rocks, minerals, and subsurface fluids. Part 1: minerals and nonporous rocks. Nat Resour Res. 2004;13(2):97–122.

    Article  Google Scholar 

  39. King EG, Weller WW. Low-temperature heat capacities and entropies at 298.15°K of diaspore, kaolinite, dickite and halloysite. Bur Mines Rept Invest. 1961;58:6–7.

    Google Scholar 

  40. Michot A, Smith DS, Degot S, Gault C. Thermal conductivity and specific heat of kaolinite: evolution with thermal treatment. J Eur Ceram Soc. 2008;28:2639–44.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Mato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mato, M.M., Casás, L.M., Legido, J.L. et al. Specific heat of mixtures of kaolin with sea water or distilled water for their use in thermotherapy. J Therm Anal Calorim 130, 479–484 (2017). https://doi.org/10.1007/s10973-017-6227-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6227-2

Keywords

Navigation