Skip to main content
Log in

Thermostability of rat sarcoma M1 procollagen solutions, procollagen fibers and whole tissues

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In close to equilibrium conditions (1° per 400 min), the DSC measurements demonstrated that the melting parameters of white rat sarcoma M1 procollagen equaled to Tm = 34.4 °C and ΔTm = 2.7°, and the same parameters of fibers reconstructed from those solutions of procollagen were Tm = 38.5 °C and ΔT = 3.1°. These values were by 1.0° lower and 0.8° wider, and by 1.7° lower and 0.7° wider in comparison with the parameters of procollagen and fibers of healthy rat tissue, accordingly. The simultaneous increase in melting temperature and melting width, and a weak decrease in melting enthalpy demonstrated that sarcoma M1 procollagen had some defects. The considerable decrease by 7° in melting temperature and decrease in thermostability of procollagen fibrils in case of sarcoma M1 in comparison to the healthy norm gives a good prospective potential of using this approach as a quick DSC test to detect various sarcomas, including human sarcomas, by comparing the biopsy material or postsurgical tissues with the normal samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Privalov P. Microcalorimetry of macromolecules: the physical basis of biological structures. New York: Wiley; 2012. ISBN 978-1-118-33750-9.

    Book  Google Scholar 

  2. Dehsorkhi A, Castelletto V, Hamley IW, Adamcik J, Mezzenga R. The effect of pH on the self-assembly of a collagen derived peptide amphiphile. R Soc Chem. 2013;9:6033–6. https://doi.org/10.1039/C3SM51029H.

    Article  CAS  Google Scholar 

  3. Freudenberg U, Behrens SH, Welzel PB, Müller M, Grimmer M, Salchert K, Taeger T, Schmidt K, Pompe W, Werner C. Electrostatic interactions modulate the conformation of collagen I. Biophys J. 2007;92(6):2108–19. https://doi.org/10.1529/biophysj.106.094284.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Wang Z, Xiao Q, Song X, Wan Y, Zhu J. Cation-specific effects on the self-assembly of collagen molecules mediated by acetate on mica surface observed with atomic force microscopy. J Food Qual. 2017;10:10. https://doi.org/10.1155/2017/1692975.

    Article  CAS  Google Scholar 

  5. Monaselidze DR, Bakradze NG. Calorimetric study of the dependence on concentration of the process of collagen fusion. Dokl Akad Nauk SSSR. 1969;189(4):899–901.

    PubMed  CAS  Google Scholar 

  6. Miles CA, Ghelashvili M. Polymer-in-a-box mechanism for the thermal stabilization of collagen molecules in fibers. Biophys J. 1996;76(6):3243–52. https://doi.org/10.1016/S0006-3495(99)77476-X.

    Article  Google Scholar 

  7. Widmer C, Gebauer J, Brunstein E, Rosenbaum S, Zaucke F, Drögemüller C, Leeb T, Baumann U. Molecular basis for the action of the collagen-specific chaperone Hsp47/SERPINH1 and its structure-specific client recognition. Proc Natl Acad Sci U S A. 2012;109(33):13243–7. https://doi.org/10.1073/pnas.1208072109.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ono T, Miyazaki T, Ishida Y, Uehata M, Nagat K. Direct in vitro and in vivo evidence for interaction between Hsp47 protein and collagen triple helix. J Biol Chem. 2012;287(9):6810–8. https://doi.org/10.1074/jbc.M111.280248.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Monaselidze DR, Bakradze NG. Calorimetric study of intramolecular fusion of collagen. Dokl Akad Nauk SSSR. 1968;183(5):1205–8.

    PubMed  CAS  Google Scholar 

  10. Leikina E, Mertt MV, Kuznetsov N, Leikin S. Type I collagen is thermally unstable at body temperature. Proc Natl Acad Sci USA. 2002;99(3):1314–8. https://doi.org/10.1073/pnas.032307099.

    Article  PubMed  Google Scholar 

  11. Privalov P, Tiktopulo E. Heat transformation of procollagen. II. Subdenaturation heat absorption in procollagen solutions in the presence of salts. Biofizika. 1969;14(1):20–7 (Article in Russian).

    PubMed  CAS  Google Scholar 

  12. Shoulders MD, Raines RT. Collagen structure and stability. Annu Rev Biochem. 2009;78:929–58. https://doi.org/10.1146/annurev.biochem.77.032207.120833.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Provenzano P, Inman D, Eliceiri K, Knittel J, Yan L, Rueden C, White J, Keely P. Collagen density promotes mammary tumor initiation and progression. BMC Med. 2008;6(11):15. https://doi.org/10.1186/1741-7015-6-11.

    Article  CAS  Google Scholar 

  14. Vachon CM, Brandt KR, Ghosh K, Scott CG, Maloney SD, Carston MJ, Pankratz VS, Sellers TA. Mammographic breast density as a general marker of breast cancer risk. Cancer Epidemiol Biomark Prev. 2007;16(1):43–9. https://doi.org/10.1158/1055-9965.EPI-06-0738.

    Article  Google Scholar 

  15. Han W, Chen S, Yuan E, Fan Q, Tian J, Wang X, Chen L, Zhang X, Wei W, Liu R, Qu J, Jiao Y, Austin R, Liu L. Oriented collagen fibers direct tumor cell intravasation. Proc Natl Acad Sci USA. 2016;113(40):11208–13. https://doi.org/10.1073/pnas.1610347113.

    Article  PubMed  CAS  Google Scholar 

  16. Fang M, Yuan J, Peng Ch, Li Y. Collagen as a double-edged sword in tumor progression. Tumour Biol. 2014;35(4):2871–82. https://doi.org/10.1007/s13277-013-1511-7.

    Article  PubMed  CAS  Google Scholar 

  17. Makareeva E, Mertz E, Kuznetsova N, Sutter M, DeRidder A, Cabral W, Barnes A, McBride D, Marini J, Leikin S. Structural heterogeneity of type I collagen triple helix and its role in osteogenesis imperfecta. J Biol Chem. 2008;28(8):4787–98. https://doi.org/10.1074/jbc.M705773200.

    Article  CAS  Google Scholar 

  18. Prockop DJ. Mutations that alter the primary structure of type I collagen. The perils of a system for generating large structures by the principle of nucleated growth. J Biol Chem. 1990;65(26):15349–52.

    Google Scholar 

  19. Monaselidze J, Abuladze M, Asatiani N, Sapojnikova N. Characterization of chromium-induced apoptosis in cultured mammalian cells: a differential scanning calorimetry study. Thermochim Acta. 2006;441(1):8–15. https://doi.org/10.1016/j.tca.2005.11.025.

    Article  CAS  Google Scholar 

  20. Nedvig K, Ferencz A, Röth E, Lörinzy D. DSC examination of intestinal tissue following warm ischemia and reperfusion injury. J Therm Anal Calorim. 2009;95:775–9. https://doi.org/10.1007/s10973-008-9416-1.

    Article  CAS  Google Scholar 

  21. Zapf I, Fekecs T, Ferencz A, Tizedes G, Pavlovics G, Kálmán E, Lőrinczy D. DSC analysis of human plasma in breast cancer patients. Thermochim Acta. 2011;524(1–2):88–91. https://doi.org/10.1016/j.tca.2011.06.019.

    Article  CAS  Google Scholar 

  22. Naumov I, Wiegand N, Patczai B, Vámhidy L, Lörinczy D. Differential scanning calorimetric examination of the human hyaline cartilage of the femoral head after femoral neck fracture. J Therm Anal Calorim. 2012;108:59–65. https://doi.org/10.1007/s10973-011-1532-7.

    Article  CAS  Google Scholar 

  23. Kikalishvili L, Ramishvili M, Nemsadze G, Monaselidze J. Thermal stability of blood plasma proteins of breast cancer patients, DSC study. J Therm Anal Calorim. 2015;120(1):501–5. https://doi.org/10.1007/s10973-015-4426-2.

    Article  CAS  Google Scholar 

  24. Andronikashvili EL. Physico-chemical changes in macromolecules of proteins and nuclear acids isolated from normal tissues and tumors. In: International biophysics congress IV 1972. Symposium VIII. Medical biophysics. Book 4, Part 1, pp. 152–175. 1972

  25. Shapiro FD, Eyre DR. Collagen polymorphism in extracellular matrix of human osteosarcoma. J Natl Cancer Inst. 1982;69(5):1009–16. https://doi.org/10.1093/jnci/69.5.1009.

    Article  PubMed  CAS  Google Scholar 

  26. Rupard JH, Dimari SJ, Damjanov I, Haralson MA. Synthesis of type I homotrimer collagen molecules by cultured human lung adenocarcinoma cells. Am J Pathol. 1988;133(2):316–26.

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Glimcher MJ, Francois CJ, Richards L, Kranea SM. The presence of organic phosphorus in collagens and gelatins. Biochimica et Biophysica Acta (BBA). 1964;9(93):585–602. https://doi.org/10.1016/0304-4165(64)90342-3.

    Article  Google Scholar 

  28. Monaselidze J, Nemsadze G, Gorgoshidze M. Differential scanning microcalorimeter device for detecting disease and monitoring therapeutic efficacy. US patent US 2019/0003995 A1, pub date: Jan 3, 2019.

  29. Makareeva E, Han S, Vera JC, Sackett DL, Holmbeck K, Phillips CL, Visse R, Nagase H, Leikin S. Carcinomas contain a matrix metalloproteinase-resistant isoform of type I collagen exerting selective support to invasion. Cancer Res. 2010;70(11):4366–74. https://doi.org/10.1158/0008-5472.CAN-09-4057.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Li Y, Brodsky B, Baum J. NMR conformational and dynamic consequences of a gly to ser substitution in an osteogenesis imperfecta collagen model peptide. J Biol Chem. 2009;284(31):20660–7. https://doi.org/10.1074/jbc.M109.018077.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Persikov AV, Ramshaw JA, Brodsky B. Prediction of collagen stability from amino acid sequence. J Biol Chem. 2005;280(19):19343–9. https://doi.org/10.1074/jbc.M501657200.

    Article  PubMed  CAS  Google Scholar 

  32. Xiao J, Cheng H, Silva T, Baum J, Brodsky B. Osteogenesis imperfecta missense mutations in collagen: structural consequences of a glycine to alanine replacement at a highly charged site. Biochemistry. 2011;50(50):10771–80. https://doi.org/10.1021/bi201476a.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Nöt LG, Naumov I, Vámhidy L, Lőrinczy D, Wiegand N. Comparison of thermal characteristics of degenerated and inflamed human collagen structures with differential scanning calorimetry. J Therm Anal Calorim. 2013;113:273–9. https://doi.org/10.1007/s10973-012-2846-9.

    Article  CAS  Google Scholar 

  34. Esipova E, Tumanyan V, Katovskaia E, Gorgoshidze M, Mesropyan I, Monaselidze J. Thermodynamic Characteristics of Collagen in Composition of Pathologic Tissues. In: 9th International conference on pharmacy and applied physical chemistry PhandTA 9, Heinrich-Heine-Universität, Düsseldorf, Deutchland. September 10–13, 2006, PO 3.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamlet Monaselidze.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monaselidze, J., Kikalishvili, L., Ramishvili, M. et al. Thermostability of rat sarcoma M1 procollagen solutions, procollagen fibers and whole tissues. J Therm Anal Calorim 142, 1561–1565 (2020). https://doi.org/10.1007/s10973-020-09332-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09332-4

Keywords

Navigation