Skip to main content
Log in

Normalization of Epigenetic Change in the Genome by Peptide Bioregulator (Ala–Glu–Asp–Gly) in Pulmonary Tuberculosis

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate genetic and epigenetic variation of the genome in patients with sensitive pulmonary tuberculosis (PT) before and after treatment, under the effect of peptide bioregulator—Ala–Glu–Asp–Gly. In lymphocyte cultures from patients with sensitive primary PT were studied: total heterochromatin with differential scanning calorimeter; facultative heterochromatin (sister chromatid exchanges) with 5-bromdeoxyuridin and mutation (chromosome aberrations). We determined: there was an epigenetic alteration of functional parameters of the genome in PT before treatment. The level of heterochromatin decreased in the telomeric regions of chromosomes (in control it was high) and increased in the middle regions of chromosomes (in control it was reduced); there was a high level of somatic recombination; revealed an increase of the frequency of cells with chromosome aberrations. Has been revealed the ability of bioregulator (Ala–Glu–Asp–Gly) to normalize the altered genomic parameters in patients with PT. The results obtained in the study, which testify to the specific epigenetic variability of the genome in patients with the sensitive form of PT, in particular—the redistribution of heterochromatin from telomere to the medial regions of chromosome arms, high level of somatic recombination and increased frequency of chromosomal aberrations, can contribute to the early detection of PT, and also a bioregulator—Ala–Glu–Asp–Gly can be used to determine the effectiveness of the treatment and used to develop new therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bolzan A (2012) Chromosomal aberrations involving telomeres and interstitial telomeric sequences. Mutagenesis 27:1–15

    Article  CAS  PubMed  Google Scholar 

  • Canzio D, Liao M, Naber N et al (2013) A conformational switch in HP1releases auto-inhibition to drive heterochromatin assembly. Nature 496:377–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardellini E, Cinelli S, Gianfranceschi G et al (2000) Differential scanning calorimetry of chromatin at different level of condensation. Mol Biol Rep 27:175–180

    Article  CAS  PubMed  Google Scholar 

  • Chiacchiera F, Piunti A, Pasini D (2013) Epigenetic methylations and their connections with metabolism. Cell Mol Life Sci 70:1495–1508

    Article  CAS  PubMed  Google Scholar 

  • Dialynas G, Vitalini M, Wallrath L (2008) Linking heterochromatin protein 1 (HP1) to cancer progression. Mutat Res 647:13–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esterhuyse M, Linhart H, Kaufmann S (2012) Can the battle against tuberculosis gain from epigenetic research? Trends Microbiol 20:220–226

    Article  CAS  PubMed  Google Scholar 

  • Haluskova J (2009) Epigenetic studies in human diseases. Folia Biol 56:83–96

    Google Scholar 

  • Hawley R, Arbel T (1993) Yeast genetics and the fall of classical view of meiosis. Cell 72:301–303

    Article  CAS  PubMed  Google Scholar 

  • Hellen T, Kluz T, Harder M et al (2009) Heterochromatinization as a potential mechanism of nickel induced carcinogenesis. Biochemistry 48:4626–4632

    Article  CAS  Google Scholar 

  • Hoo J, Parslow I (1979) Relation between the SCE points and the DNA replication bands. Chromosoma 71:67–74

    Article  Google Scholar 

  • ISCN (1985) An international system for human cytogenetic nomenclature. Karger, Basel

    Google Scholar 

  • Khavinson V, Lezhava T, Monaselidze J (2003) PeptideEpitalon activates chromatin at the old age. Neuroendocrinol Lett 24:329–333

    CAS  PubMed  Google Scholar 

  • Khavinson V, Kuznik B, Ryzhak G (2014) Peptide bioregulators: a new class of geroprotectors, report 2. The results of clinical trials. Adv Gerontol 4:346–361

    Article  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  Google Scholar 

  • Lazutka I (1990) Sister chromatid exchanges in the cells of higher eukaryotes. Tsitologiia 32:977–984

    PubMed  Google Scholar 

  • Lehner B, Sandner B, Marschallinger J et al (2011) The dark side of BRdU in neural stem cell biology detrimental effects on cell cycle differentiation and survival. Cell Tissue Res 345:313–328

    Article  CAS  PubMed  Google Scholar 

  • Lezhava T (2001) Chromosome and aging: genetic conception of aging. Biogerontology 2:253–260

    Article  CAS  PubMed  Google Scholar 

  • Lezhava T (2006) Human chromosomes and aging from 80 to 114 years. Nova Biomedical, New York

    Google Scholar 

  • Lezhava T, Monaselidze J, Jokhadze T et al (2011a) Gerontology research in Georgia. Biogerontology 12:87–91

    Article  PubMed  Google Scholar 

  • Lezhava T, Monaselidze J, Jokhadze T et al (2011b) Remodeling of heterochromatin induced by heavy metals in extreme old age. Age (Dordrecht) 33:433–438

    Article  CAS  Google Scholar 

  • Lezhava T, Monaselidze J, Jokhadze T et al (2015) Epigenetic regulation of “age” heterochromatin by peptide bioregulator cortagen. Int J Pept Res Ther 21:157–163

    Article  CAS  Google Scholar 

  • Li E, Zhang Y (2014) DNA methylation in mammals. Cold Spring Harb Perspect Biol 6:5

    Article  CAS  Google Scholar 

  • Mazin A (2009) Suicidal function of DNA methylation in age-related genome disintegration. Ageing Res Rev 8:314–327

    Article  CAS  PubMed  Google Scholar 

  • Moller M, de Wit E, Hoal E (2010) Past, presen and future directions in human genetic susceptibility to tuberculosis. FEMS Immunol Med Microbiol 58:3–26

    Article  CAS  PubMed  Google Scholar 

  • Monaselidze J, Abuladze M, Asatiani N (2006) Characterization of chromium-induced apoptosis in cultured mammalian cells. A different scanning calorimetry study. Thermochem Acta 441:8–15

    Article  CAS  Google Scholar 

  • Moroz V, Smirnova S, Ivanova O et al (2007) Mutations and antimutagens in emergency medicine. Obshaya Reanimatol 111:213–217

    Article  Google Scholar 

  • Novitskiĭ V, Strelis A, Urazova O (2005) The cytogenic status of peripheral lymphocytes in pulmonary tuberculosis before and during chemotherapy. ProblTuberkBoleznLegk 5:43–46

    Google Scholar 

  • Prokofieva-Belgovskaya A (1986) Heterochromatin regions of chromosomes. Nauka, Moscow

    Google Scholar 

  • Qu H, Fisher-Hoch S, McCormick J (2011) Knowledge gaining by human genetic studies on tuberculosis susceptibility. J Hum Genet 56:177–182

    Article  CAS  PubMed  Google Scholar 

  • Reiner S (2005) Epigenetic control in the immune response. Hum Mol Genet 14:41–46

    Article  CAS  Google Scholar 

  • Rudd M, Friedman C, Parghi S et al (2007) elevated rates of sister chromatid exchange at chromosome ends. PLoS Genet 3:e32. https://doi.org/10.1371/journal.pgen.0030032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sperling K, Wegner R, Riehm H et al (1975) Frequency and distribution of sister-chromatid exchanges in a case of Fanconi’s anemia. Humangenetik 27:227–230

    CAS  PubMed  Google Scholar 

  • Thye T, Vannberg F, Wong S et al (2010) Genome wide association analyses. Identifiesasusceptibility for tuberculosis on chromosome 18q11.2. Nature 2:739–741

    Google Scholar 

  • WHO (2014) Global tuberculosis report 2014. World Health Organization, Geneva. Accessed 29 June 2015

    Google Scholar 

  • Wilson C, Rowell E, Sekimata M (2009) Epigenetic control of T-helper-cell differentiation. Nat Rev Immunol 9:91–105

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This article is dedicated to the memory of Professor A.A. Prokofieva-Belgovskaya from her grateful students.

Funding

This research was supported by Shota Rustaveli National Science Foundation (SRNSF) [Grant Number DI-2016-39].

Author information

Authors and Affiliations

Authors

Contributions

TL carried out the study and drafted the manuscript with TJ and JM. TB and MG were responsible for lymphocyte cultures and took part in the design of the study. NK and KR were responsible for the material collection parts. All authors were involved in finalizing the manuscript and read and approved the submitted version.

Corresponding author

Correspondence to Teimuraz Lezhava.

Ethics declarations

Conflict of interest

Teimuraz Lezhava, Tamar Buadze, Tinatin Jokhadze, Jamlet Monaselidze, Maia Gaiozishvili, Ketevan Rubanovi and Nana Kiria confirm that this article content has no conflicts of interest.

Human and Animal Rights

Samples of peripheral blood were obtained from healthy individuals and from individuals with PT, after and before treatment. Biological material (peripheral blood) was collected out in accordance with international requirements, Research object-isolated lymphocytes for cultivation (in vitro). All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain studies with animal subjects.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lezhava, T., Buadze, T., Jokhadze, T. et al. Normalization of Epigenetic Change in the Genome by Peptide Bioregulator (Ala–Glu–Asp–Gly) in Pulmonary Tuberculosis. Int J Pept Res Ther 25, 555–563 (2019). https://doi.org/10.1007/s10989-018-9699-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-018-9699-4

Keywords

Navigation