Skip to main content

Advertisement

Log in

Impacts of Mauritia flexuosa degradation on the carbon stocks of freshwater peatlands in the Pastaza-Marañón river basin of the Peruvian Amazon

  • Original Article
  • Published:
Mitigation and Adaptation Strategies for Global Change Aims and scope Submit manuscript

Abstract

Tropical peat swamp forests (PSF) are characterized by high quantities of carbon (C) stored as organic soil deposits due to waterlogged conditions which slows down decomposition. Globally, Peru has one of the largest expanse of tropical peatlands, located primarily within the Pastaza-Marañón river basin in the Northwestern Peru. Peatland forests in Peru are dominated by a palm species—Mauritia flexuosa, and M. flexuosa-dominated forests cover ~ 80% of total peatland area and store ~ 2.3 Pg C. However, hydrologic alterations, land cover change, and anthropogenic disturbances could lead to PSF’s degradation and loss of valuable ecosystem services. Therefore, evaluation of degradation impacts on PSF’s structure, biomass, and overall C stocks could provide an estimate of potential C losses into the atmosphere as greenhouse gases (GHG) emissions. This study was carried out in three regions within Pastaza-Marañón river basin to quantify PSF’s floristic composition and degradation status and total ecosystem C stocks. There was a tremendous range in C stocks (Mg C ha−1) in various ecosystem pools—vegetation (45.6–122.5), down woody debris (2.1–23.1), litter (2.3–7.8), and soil (top 1 m; 109–594). Mean ecosystem C stocks accounting for the top 1 m soil were 400, 570, and 330 Mg C ha−1 in Itaya, Tigre, and Samiria river basins, respectively. Considering the entire soil depth, mean ecosystem C stocks were 670, 1160, and 330 Mg C ha−1 in Itaya, Tigre, and Samiria river basins, respectively. Floristic composition and calcium to Magnesium (Ca/Mg) ratio of soil profile offered evidence of a site undergoing vegetational succession and transitioning from minerotrophic to ombrotrophic system. Degradation ranged from low to high levels of disturbance with no significant difference between regions. Increased degradation tended to decrease vegetation and forest floor C stocks and was significantly correlated to reduced M. flexuosa biomass C stocks. Long-term studies are needed to understand the linkages between M. flexuosa harvest and palm swamp forest C stocks; however, river dynamics are important natural drivers influencing forest succession and transition in this landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Asner GP, Knapp DE, Martin RE, Tupayachi R, Anderson CB, Mascaro J, Sinca F, Chadwick KD, Sousan S, Higgins M (2014) The high-resolution carbon geography of Peru. Carnegie Airborne Observatory and the ministry of environment of Perú

  • Bailey HH (1951) Peat formation in the tropics and subtropics. Soil Sci Soc Am J 15(C):283–284

  • Bernal C, Christophoul F, Darrozes J, Soula J-C, Baby P, Burgos J (2011) Late Glacial and Holocene avulsions of the Rio Pastaza Megafan (Ecuador–Peru): frequency and controlling factors. Int J Earth Sci 100:1759–1782

    Article  Google Scholar 

  • Bradshaw CJ, Sodhi NS, Brook BW (2008) Tropical turmoil: a biodiversity tragedy in progress. Front Ecol Environ 7:79–87

    Article  Google Scholar 

  • Brown JK (1974) Handbook for inventorying downed woody material. General Technical Report GTR-INT-16. in Service UF (ed) Missoula

  • Curtis JT, McIntosh RP (1951) An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology 32:476–496

    Article  Google Scholar 

  • Dargie GC, Lewis SL, Lawson IT, Mitchard ET, Page SE, Bocko YE, Ifo SA (2017) Age, extent and carbon storage of the central Congo Basin peatland complex. Nature 542:86–90

    Article  Google Scholar 

  • Delgado C, Couturier G, Mejia K (2007) Mauritia flexuosa (Arecaceae: Calamoideae), an Amazonian palm with cultivation purposes in Peru. Fruits 62:157–169

    Article  Google Scholar 

  • Draper FC, Roucoux KH, Lawson IT, Mitchard ET, Coronado ENH, Outi L, Montenegro LT, Sandoval EV, Baker TR (2014) The distribution and amount of carbon in the largest peatland complex in Amazonia. Environ Res Lett 9:124017

    Article  Google Scholar 

  • Draper FC, Coronado ENH, Roucoux KH, Lawson IT, Pitman NC, Fine PV, Phillips OL, Montenegro LAT, Sandoval EV, Mesones I, García-Villacorta R (2017) Peatland forests are the least diverse tree communities documented in Amazonia, but contribute to high regional beta-diversity. Ecography. https://doi.org/10.1111/ecog.03126

  • Emilio T, Quesada CA, Costa FR, Magnusson WE, Schietti J, Feldpausch TR, Brienen RJ, Baker TR, Chave J, Álvarez E (2014) Soil physical conditions limit palm and tree basal area in Amazonian forests. Plant Ecol Divers 7:215–229

    Article  Google Scholar 

  • Endress BA, Horn CM, Gilmore MP (2013) Mauritia flexuosa palm swamps: composition, structure and implications for conservation and management. Forest Ecol Manag 302:346–353

    Article  Google Scholar 

  • Goodman RC, Phillips OL, del Castillo Torres D, Freitas L, Cortese ST, Monteagudo A, Baker TR (2013) Amazon palm biomass and allometry. Forest Ecol Manag 310:994–1004

    Article  Google Scholar 

  • Gumbricht T, Roman-Cuesta RM, Verchot L, Herold M, Wittmann F, Householder E, Herold N, Murdiyarso D (2017) An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor. Glob Chang Biol 23:3581–3599

    Article  Google Scholar 

  • Harmon ME, Sexton J (1996) Guidelines for measurements of woody detritus in forest ecosystems. US LTER Network Office, Seattle

    Google Scholar 

  • Hergoualc’h K, Verchot LV (2011) Stocks and fluxes of carbon associated with land use change in southeast Asian tropical peatlands: a review. Glob Biogeochem Cycles 25(2). https://doi.org/10.1029/2009GB003718

  • Hergoualc’h K, Verchot L (2014) Greenhouse gas emission factors for land use and land-use change in southeast Asian peatlands. Mitig Adapt Strateg Glob Chang 19:789–807

    Article  Google Scholar 

  • Hergoualc’h K, Gutiérrez-Vélez VH, Menton M, Verchot LV (2017) Characterizing degradation of palm swamp peatlands from space and on the ground: an exploratory study in the Peruvian Amazon. Forest Ecol Manag 393:63–73

    Article  Google Scholar 

  • Hooijer A, Page S, Canadell JG, Silvius M, Kwadijk J, Wösten H, Jauhiainen J (2010) Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 7(5):1505–1514

  • Horn CM, Gilmore MP, Endress BA (2012) Ecological and socio-economic factors influencing aguaje (Mauritia flexuosa) resource management in two indigenous communities in the Peruvian Amazon. Forest Ecol Manag 267:93–103

    Article  Google Scholar 

  • Householder JE, John PJ, Mathias WT, Susan P, Outi L (2012) Peatlands of the Madre de Dios River of Peru: distribution, geomorphology, and habitat diversity. Wetlands 32:359–368

    Article  Google Scholar 

  • Hribljan JA, Suárez E, Heckman KA, Lilleskov EA, Chimner RA (2016) Peatland carbon stocks and accumulation rates in the Ecuadorian páramo. Wetl Ecol Manag 24:113–127

    Article  Google Scholar 

  • Hribljan JA, Suarez E, Bourgeau-Chavez L, Endres S, Lilleskov EA, Chimbolema S, Wayson C, Serocki E, Chimner RA (2017) Multidate, multisensor remote sensing reveals high density of carbon-rich mountain peatlands in the páramo of Ecuador. Glob Chang Biol 23:5412–5425

    Article  Google Scholar 

  • Jauhiainen J, Takahashi H, Heikkinen JE, Martikainen PJ, Vasander H (2005) Carbon fluxes from a tropical peat swamp forest floor. Glob Chang Biol 11:1788–1797

    Article  Google Scholar 

  • Kahn F (1991) Palms as key swamp forest resources in Amazonia. Forest Ecol Manag 38:133–142

    Article  Google Scholar 

  • Kahn F, Mejia K (1990) Palm communities in wetland forest ecosystems of Peruvian Amazonia. For Ecol Manag 33:169–179

    Article  Google Scholar 

  • Kahn F, Mejia K, de Castro A (1988) Species richness and density of palms in terra firme forests of Amazonia. Biotropica 20:266–269

    Article  Google Scholar 

  • Kalliola R, Salo J, Puhakka M, Rajasilta M, Häme T, Neller RJ, Räsänen ME, Danjoy Arias WA (1992) Upper amazon channel migration. Naturwissenschaften 79:75–79

    Article  Google Scholar 

  • Kauffman JB, Donato D (2012) Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests. Center for International Forestry Research Center (CIFOR) Working paper 86

  • Kauffman JB, Arifanti VB, Basuki I, Kurnianto S, Novita N, Murdiyarso D, Donato DC, Warren MW (2016) Protocols for the measurement, monitoring, and reporting of structure, biomass, carbon stocks and greenhouse gas emissions in tropical peat swamp forests. Center for International Forestry Research (CIFOR), Bogor

  • Kelly TJ, Baird AJ, Roucoux KH, Baker TR, Honorio Coronado EN, Ríos M, Lawson IT (2014) The high hydraulic conductivity of three wooded tropical peat swamps in northeast Peru: measurements and implications for hydrological function. Hydrol Process 28:3373–3387

    Article  Google Scholar 

  • Kelly TJ, Lawson IT, Roucoux KH, Baker TR, Jones TD, Sanderson NK (2017) The vegetation history of an Amazonian domed peatland. Palaeogeogr Palaeoclimatol Palaeoecol 468:129–141

    Article  Google Scholar 

  • Kurnianto S, Warren M, Talbot J, Kauffman B, Murdiyarso D, Frolking S (2015) Carbon accumulation of tropical peatlands over millennia: a modeling approach. Glob Chang Biol 21:431–444

    Article  Google Scholar 

  • Lähteenoja O, Page S (2011) High diversity of tropical peatland ecosystem types in the Pastaza-Marañón basin, Peruvian Amazonia. J Geophys Res Biogeosci 116(G2). https://doi.org/10.1029/2010JG001508

  • Lähteenoja O, Ruokolainen K, Schulman L, Alvarez J (2009a) Amazonian floodplains harbour minerotrophic and ombrotrophic peatlands. Catena 79:140–145

    Article  Google Scholar 

  • Lähteenoja O, Ruokolainen K, Schulman L, Oinonen M (2009b) Amazonian peatlands: an ignored C sink and potential source. Glob Chang Biol 15:2311–2320

    Article  Google Scholar 

  • Lähteenoja O, Reátegui YR, Räsänen M, Torres DDC, Oinonen M, Page S (2012) The large Amazonian peatland carbon sink in the subsiding Pastaza-Marañón foreland basin, Peru. Glob Chang Biol 18:164–178

    Article  Google Scholar 

  • Lähteenoja O, Flores B, Nelson B (2013) Tropical peat accumulation in Central Amazonia. Wetlands 33:495–503

    Article  Google Scholar 

  • Lawson IT, Jones TD, Kelly TJ, Coronado ENH, Roucoux KH (2014) The geochemistry of Amazonian peats. Wetlands 34:905–915

    Article  Google Scholar 

  • Lawson IT, Kelly T, Aplin P, Boom A, Dargie G, Draper F, Hassan P, Hoyos-Santillan J, Kaduk J, Large D (2015) Improving estimates of tropical peatland area, carbon storage, and greenhouse gas fluxes. Wetl Ecol Manag 23:327–346

    Article  Google Scholar 

  • Limpens J, Berendse F, Blodau C, Canadell J, Freeman C, Holden J, Roulet N, Rydin H, Schaepman-Strub G (2008) Peatlands and the carbon cycle: from local processes to global implications—a synthesis. Biogeosciences 5:1475–1491

    Article  Google Scholar 

  • Manzi M, Coomes OT (2009) Managing Amazonian palms for community use: a case of aguaje palm (Mauritia flexuosa) in Peru. Forest Ecol Manag 257:510–517

    Article  Google Scholar 

  • Marengo J (1998) Climatología de la zona de Iquitos, Perú Geoecologia y desarrollo Amazonico: estudio integrado en la zona de Iquitos. Peru University of Turku Press, Turku, pp 35–57

    Google Scholar 

  • Maria Pacheco SL (2005) Nutritional and ecological aspects of buriti or aguaje (Mauritia flexuosa Linnaeus filius): a carotene-rich palm fruit from Latin America. Ecol Food Nutr 44:345–358

    Article  Google Scholar 

  • Melillo JM, Aber JD, Linkins AE, Ricca A, Fry B, Nadelhoffer KJ (1989) Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter. Plant Soil 115:189–198

    Article  Google Scholar 

  • MINAM (2010) Mapa del Patrimonio Forestal Nacional. In: Dirección General de Evaluación VyFdPN (ed) Ministerio del Ambiente-MINAM, Lima, Peru

  • Morozova GS, Smith ND (2003) Organic matter deposition in the Saskatchewan River floodplain (Cumberland Marshes, Canada): effects of progradational avulsions. Sediment Geol 157:15–29

    Article  Google Scholar 

  • Murdiyarso D, Kauffman JB, Verchot LV (2013) Climate change mitigation strategies should include tropical wetlands. Carbon Manag 4:491–499

    Article  Google Scholar 

  • Neller R, Salo J, Rasanen M (1992) On the formation of blocked valley lakes by channel avulsion in Upper Amazon foreland basins. Z Geomorphol 36:401–411

    Google Scholar 

  • Page SE, Rieley JO, Banks CJ (2011) Global and regional importance of the tropical peatland carbon pool. Glob Chang Biol 17:798–818

    Article  Google Scholar 

  • Palace M, Keller M, Hurtt G, Frolking S (2012) A review of above ground necromass in tropical forests. In: Sudarshana P, Nageswara-Rao M, Soneji JR (eds) Tropical forests. Intech (online publisher), pp 215–252. Published online at: http://www.intechopen.com/books/tropical-forests

  • Parodi JL, Freitas D (1990) Geographical aspects of forested wetlands in the lower Ucayali, Peruvian Amazonia. Forest Ecol Manag 33:157–168

    Article  Google Scholar 

  • Posa MRC, Wijedasa LS, Corlett RT (2011) Biodiversity and conservation of tropical peat swamp forests. Bioscience 61:49–57

    Article  Google Scholar 

  • Queiroz JSD, Silva F, Ipenza C, Hernick C, Batallanos L, Griswold D, Rogers AE (2014) Peru tropical forest and biodiversity assessment. USAID. Published online at http://www.usaidgems.org/Documents/FAA&Regs/FAA118119LAC/Peru%20FAA%20118%20119%20FB%20Assessment%20August%202014.pdf

  • Räsänen ME, Salo J, Jungnert H, Pittman LR (1990) Evolution of the western Amazon lowland relief: impact of Andean foreland dynamics. Terra Nova 2:320–332

    Article  Google Scholar 

  • Räsänen M, Neller R, Salo J, Jungner H (1992) Recent and ancient fluvial deposition systems in the Amazonian foreland basin, Peru. Geol Mag 129:293–306

    Article  Google Scholar 

  • Rieley J, Wüst R, Jauhiainen J, Page S, Wösten H, Hooijer A, Siegert F, Limin S, Vasander H, Stahlhut M (2008) Tropical peatlands: carbon stores, carbon gas emissions and contribution to climate change processes. In: Peatlands and climate change, vol 12. International Peat Society, Vapaudenkatu, pp 148–182

    Google Scholar 

  • Rodríguez F (1990) Los suelos de áreas inundables de la Amazonía Peruana: potencial, limitaciones y estrategias para su investigación. Folia Amazónica IIAP 2:7–25

    Article  Google Scholar 

  • Roucoux KH, Lawson IT, Jones TD, Baker TR, Coronado EH, Gosling WD, Lähteenoja O (2013) Vegetation development in an Amazonian peatland. Palaeogeogr Palaeoclimatol Palaeoecol 374:242–255

    Article  Google Scholar 

  • Sierra CA, del Valle JI, Orrego SA, Moreno FH, Harmon ME, Zapata M, Colorado GJ, Herrera MA, Lara W, Restrepo DE, Berrouet LM, Loaiza LM, Benjumea JF (2007) Total carbon stocks in a tropical forest landscape of the Porce region, Colombia. Forest Ecol Manag 243:299–309

    Article  Google Scholar 

  • Simard RR (1993) Ammonium acetate-extractable elements. In: Carter MR (ed) Soil sampling and methods of analysis. Canadian Society of Soil Science, Lewis Publishers, Boca Raton, pp 39–49

  • Smith ND, Cross TA, Dufficy JP, Clough SR (1989) Anatomy of an avulsion. Sedimentology 36:1–23

    Article  Google Scholar 

  • Terborgh J, Andresen E (1998) The composition of Amazonian forests: patterns at local and regional scales. J Trop Ecol 14:645–664

    Article  Google Scholar 

  • Thompson ID, Guariguata MR, Okabe K, Bahamondez C, Nasi R, Heymell V, Sabogal C (2013) An operational framework for defining and monitoring forest degradation. Ecol Soc 18:20

    Article  Google Scholar 

  • van Lent J, Hergoualc’h K, Verchot L, Oenema O, van Groenigen JW (2018) Greenhouse gas emissions along a peat swamp forest degradation gradient in the Peruvian Amazon: soil moisture and palm roots effects. Mitig Adapt Strateg Glob Chang 1–19. https://doi.org/10.1007/s11027-018-9796-x

  • Virapongse A, Endress BA, Gilmore MP, Horn C, Romulo C (2017) Ecology, livelihoods, and management of the Mauritia flexuosa palm in South America. Glob Ecol Conserv 10:70–92

    Article  Google Scholar 

  • Yule CM, Gomez LN (2009) Leaf litter decomposition in a tropical peat swamp forest in Peninsular Malaysia. Wetl Ecol Manag 17:231–241

    Article  Google Scholar 

  • Zambrana NYP, Byg A, Svenning J-C, Moraes M, Grandez C, Balslev H (2007) Diversity of palm uses in the western Amazon. Biodivers Conserv 16:2771–2787

    Article  Google Scholar 

Download references

Acknowledgements

The research was a collaborative effort with partners from Instituto de investigaciones de la Amazonía Peruana (IIAP), US Department of Agriculture and CIFOR. Authors would like to thank Prof. Martin Herold, Dennis Del Castillo, Monica Aleman and Gloria Arellano and a group of enthusiastic people who enabled data collection in the field. We acknowledge the effort of field crew members—Nicole M Riviera, Julio Irarica, Diego Martin, Jack Pacaya, Victor Ruiz, Cecilia B Falcón, Ricardo Z Young, Elvis J Paredes, Rique B Estrada, Jose Manuel R Huaymacari, Maria E R Pena, Jhon del A Pasquel, Carlos G Hidalzo Pizano, and Luisa N Huaratapairo. The Analytical Lab, University of Hawaii, Honolulu, US is also acknowledged for performing soil elemental analysis. We also thank the SERNANP for providing research permit (No 009-2015-SERNAP-RNPS-JEF) that enabled sampling in the Pacaya Samiria National Reserve. Finally, we thank two anonymous reviewers and associate editor for their insightful comments that greatly improved this manuscript.

Funding

This study was made possible by a grant from the US Department of Agriculture, Forest Service (FS), Washington Office, and FS International Programs, implemented by Department of Environmental Sciences, Wageningen University, The Netherlands.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupesh Kumar Bhomia.

Electronic supplementary material

ESM 1

(DOCX 90 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhomia, R.K., van Lent, J., Rios, J.M.G. et al. Impacts of Mauritia flexuosa degradation on the carbon stocks of freshwater peatlands in the Pastaza-Marañón river basin of the Peruvian Amazon. Mitig Adapt Strateg Glob Change 24, 645–668 (2019). https://doi.org/10.1007/s11027-018-9809-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11027-018-9809-9

Keywords

Navigation