Skip to main content

Advertisement

Log in

Better estimates of soil carbon from geographical data: a revised global approach

  • Original Article
  • Published:
Mitigation and Adaptation Strategies for Global Change Aims and scope Submit manuscript

Abstract

Soils hold the largest pool of organic carbon (C) on Earth; yet, soil organic carbon (SOC) reservoirs are not well represented in climate change mitigation strategies because our database for ecosystems where human impacts are minimal is still fragmentary. Here, we provide a tool for generating a global baseline of SOC stocks. We used partial least square (PLS) regression and available geographic datasets that describe SOC, climate, organisms, relief, parent material and time. The accuracy of the model was determined by the root mean square deviation (RMSD) of predicted SOC against 100 independent measurements. The best predictors were related to primary productivity, climate, topography, biome classification, and soil type. The largest C stocks for the top 1 m were found in boreal forests (254 ± 14.3 t ha−1) and tundra (310 ± 15.3 t ha−1). Deserts had the lowest C stocks (53.2 ± 6.3 t ha−1) and statistically similar C stocks were found for temperate and Mediterranean forests (142 - 221 t ha−1), tropical and subtropical forests (94 - 143 t ha−1) and grasslands (99-104 t ha−1). Solar radiation, evapotranspiration, and annual mean temperature were negatively correlated with SOC, whereas soil water content was positively correlated with SOC. Our model explained 49% of SOC variability, with RMSD (0.68) representing approximately 14% of observed C stock variance, overestimating extremely low and underestimating extremely high stocks, respectively. Our baseline PLS predictions of SOC stocks can be used for estimating the maximum amount of C that may be sequestered in soils across biomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams M, Crawford J, Field D, Henakaarchchi N, Jenkins M, McBratney A, de Courcelles VDR, Singh K, Stockmann U, Wheeler I (2011) Managing the soil-plant system to mitigate atmospheric CO2. Discussion paper for the Soil Carbon Sequestration Summit, 31 January–2 February 2011. The United States Studies Centre at the University of Sydney

  • Adhikari K, Hartemink AE, Minasny B, Kheir RB, Greve MB, Greve MH (2014) Digital mapping of soil organic carbon contents and stocks in Denmark. PLoS One 9(8):e105519

    Article  Google Scholar 

  • Asner GP, Powell GVN, Mascaro J, Knapp DE, Clark JK, Jacobson J, Kennedy-Bowdoin T, Balaji A, Paez-Acosta G, Victoria E, Secada L, Valqui M, Hughes RF (2010) High-resolution forest carbon stocks and emissions in the Amazon. Proc Natl Acad Sci 107:16738–16742

    Article  Google Scholar 

  • Austin AT, Vivanco L (2006) Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442:555–558

    Article  Google Scholar 

  • Batjes NH (1995) A homogenized soil data file for global environmental research: a subset of FAO, ISRIC and NRCS profiles (version 1.0). Working Paper and preprint 95/10b, International Soil Reference and Information Centre, Wageningen. In

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163

    Article  Google Scholar 

  • Berhongaray G, Alvarez R, De Paepe J, Caride C, Cantet R (2013) Land use effects on soil carbon in the Argentine Pampas. Geoderma 192:97–110

    Article  Google Scholar 

  • Borchard N, Schirrmann M, Hebel Cv, Schimdt M, Baatz R, Firbank L, Vereecken H, Herbst M (2015) Spatio-temporal drivers of soil and ecosystem carbon fluxes at field scale in an upland grassland in Germany. Agric Ecosyst Environ 211:84 93

  • Bouwman AF (1990) Soils and the greenhouse effect. Wiley. 596 pp.

  • Bui E, Henderson B, Viergever K (2009) Using knowledge discovery with data mining from the Australian Soil Resource Information System database to inform soil carbon mapping in Australia. Glob Biogeochem Cycles 23(4)

  • Chapin FS, Matson PA, Mooney HA (2002) Principles of terrestrial ecosystem ecology, principles of terrestrial ecosystem ecology. Springer. https://doi.org/10.1007/978-1-4419-9504-9

  • Cowie AL, Orr BJ, Sanchez VMC, Chasek P, Crossman ND, Erlewein A, Louwagie G, Maron M, Metternicht GI, Minelli S, Tengberg AE (2018) Land in balance: the scientific conceptual framework for land degradation neutrality. Environ Sci Policy 79:25–35

    Article  Google Scholar 

  • Dalal RC, Mayer RJ (1986) Long-term trends in fertility of soils under continuous cultivation and cereal cropping in Southern Queensland. III. Distribution and kinetics of soil organic carbon in particle size fractions. Aust J Soil Res 24:293–300

    Article  Google Scholar 

  • Deng L, Zhu G, Tang Z, Shangguan Z (2016) Global patterns of the effects of land-use changes on soil carbon stocks. Glob Ecol Conserv 5:127–138

    Article  Google Scholar 

  • Doetterl S, Stevens A, van Oost K, Quine TA, van Wesemael B (2013) Spatially-explicit regional-scale prediction of soil organic carbon stocks in cropland using environmental variables and mixed model approaches. Geoderma 204:31–42

    Article  Google Scholar 

  • Dokuchaev V (1879) Mapping the Russian soils. Imperial Univ. of St, Petersburg

    Google Scholar 

  • Don A, Schumacher J, Freibauer A (2011) Impact of tropical land-use change on soil organic carbon stocks—a meta-analysis. Glob Chang Biol 17(4):1658–1670

    Article  Google Scholar 

  • Fick SE, Hijmans RJ (2017) Worldclim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315

    Article  Google Scholar 

  • Galbraith D, Malhi Y, Affum-Baffoe K, Castanho ADA, Doughty CE, Fisher RA, Lewis SL, Peh KSH, Phillips OL, Quesada CA, Sonké B, Lloyd J (2013) Residence times of woody biomass in tropical forests. Plant Ecol Divers 6(1):139–157

    Article  Google Scholar 

  • Gilmanov TG, Soussana JF, Aires L, Allard V, Ammann C, Balzarolo M, Barcza Z, Bernhofer C, Campbell CL, Cernusca A, Cescatti A, Clifton-Brown J, Dirks BOM, Dore S, Eugster W, Fuhrer J, Gimeno C, Gruenwald T, Haszpra L, Hensen A, Ibrom A, Jacobs AFG, Jones MB, Lanigan G, Laurila T, Lohila A, Manca G, Marcolla B, Nagy Z, Pilegaard K, Pinter K, Pio C, Raschi A, Rogiers N, Sanz MJ, Stefani P, Sutton M, Tuba Z, Valentini R, Williams ML, Wohlfahrt G (2007) Partitioning European grassland net ecosystem CO2 exchange into gross primary productivity and ecosystem respiration using light response function analysis. Agric Ecosyst Environ 121:93–120

    Article  Google Scholar 

  • Grimm R, Behrens T, Marker M, Elsenbeer H (2008) Soil organic carbon concentrations and stocks on Barro Colorado Island—digital soil mapping using Random Forests analysis. Geoderma 146:102–113

    Article  Google Scholar 

  • Hartmann J, Moosdorf N (2012) The new global lithological map database GLiM: a representation of rock properties at the Earth surface. Geochem Geophys Geosyst 13:Q12004. https://doi.org/10.1029/2012GC004370

    Article  Google Scholar 

  • Hengl T, de Jesus JM, MacMillan RA, Batjes NH, Heuvelink GBM, Ribeiro E, Samuel-Rosa A, Kempen B, Leenaars JGB, Walsh MG, Gonzalez MR (2014) SoilGrids1km —global soil information based on automated mapping. PLoS One 9(8):e105992. https://doi.org/10.1371/journal.pone.0105992

    Article  Google Scholar 

  • Hengl T, de Jesus JM, Heuvelink GBM, Ruiperez Gonzalez M, Kilibarda M, Blagotić A, Shangguan W, Wright MN, Geng X, Bauer-Marschallinger B, Guevara MA, Vargas R, MacMillan RA, Batjes NH, Leenaars JGB, Ribeiro E, Wheeler I, Mantel S, Kempen B (2017) SoilGrids250m: global gridded soil information based on machine learning. PLoS One 12(2):e0169748. https://doi.org/10.1371/journal.pone.0169748

    Article  Google Scholar 

  • Hiederer R, Köchy M (2011) Global soil organic carbon estimates and the Harmonized World Soil Database. EUR 25225 EN. Publications Office of the European Union. 79 pp.

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978

    Article  Google Scholar 

  • Houghton RA (2014) The contemporary carbon cycle. In: Turekian HDHK (ed) Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 399–435. https://doi.org/10.1016/B978-0-08-095975-7.00810-X

    Chapter  Google Scholar 

  • Hounkpatin OKL, Op de Hipt F, Bossa AY, Welp G, Amelung W (2018) Soil organic carbon stocks and their determining factors in the Dano catchment (Soutwest Burkina Faso). Catena 166:298–309

    Article  Google Scholar 

  • Iwahashi J, Pike RJ (2007) Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature. Geomorphology 86(3):409–440

    Article  Google Scholar 

  • Jenny H (1941) Factors of soil formation: a system of quantitative pedology. Dover books on Earth sciences. Dover Publications

  • Jobbagy E, Jackson R (2000) The vertical distribution of soil organic carbon and its relation to climate vegetation. Ecol Appl 10(2):423–436

    Article  Google Scholar 

  • Kögel-Knaber I, Amelung W (2014) Dynamics, chemistry, and preservation of organic matter in soils. Reference Module in Earth Systems and Environmental Sciences, from Treatise on Geochemistry. Geochemistry 12:157–215

    Google Scholar 

  • Kuzyakov Y (2006) Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol Biochem 38(3):425–448

    Article  Google Scholar 

  • Ladd B, Peri PL (2013) REDD+ en Latinoamérica: el caso de Perú. Bosque 34(2):125–128

    Article  Google Scholar 

  • Ladd B, Bonser SP, Peri PL, Larsen JR, Laffan SW, Pepper DA, Cendón DI (2009) Towards a physical description of habitat: quantifying environmental adversity (abiotic stress) in temperate forest and woodland ecosystems. J Ecol 97:964–971

    Article  Google Scholar 

  • Ladd B, Laffan SW, Amelung W, Peri PL, Silva LCR, Gervassi P, Bonser SP, Navall M, Sheil D (2013) Estimates of soil carbon concentration in tropical and temperate forest and woodland from available GIS data on three continents. Glob Ecol Biogeogr 22(4):461–469

    Article  Google Scholar 

  • Ladd B, Peri PL, Pepper DA, Silva LCR, Sheil D, Bonser SP, Laffan SW, Amelung W, Ekblad A, Eliasson P, Bahamonde H, Duarte-Guardia S, Bird M (2014) Carbon isotopic signatures of soil organic matter correlate with leaf area index across woody biomes. J Ecol 102(6):1606–1611

    Article  Google Scholar 

  • Ladd B, Dumler S, Loret de Mola E, Anaya de la Rosa R, Borchard N (2018) Incremento de rentabilidad en producción del maíz en perú: N-fertilizantes y biochar. Biologist (Lima) 15:23–35

    Google Scholar 

  • Laganiere J, Angers DA, Pare D (2010) Carbon accumulation in agricultural soils after afforestation: a meta-analysis. Glob Chang Biol 16:439–453

    Article  Google Scholar 

  • Lal R (2004a) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22

    Article  Google Scholar 

  • Lal R (2004b) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627

    Article  Google Scholar 

  • Lal R (2013) Soil carbon management and climate change. Carbon Manag 4(4):439–462

    Article  Google Scholar 

  • Lal R (2016) Beyond COP21: potential and challenges of the “4 per thousand” initiative. J Soil Water Conserv 71:20A–25A

    Article  Google Scholar 

  • Lam SK, Chen D, Mosier AR, Roush R (2013) The potential for carbon sequestration in Australian agricultural soils is technically and economically limited. Sci Rep 3:2179

    Article  Google Scholar 

  • Lützow MV, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur J Soil Sci 57:426–445

    Article  Google Scholar 

  • Malhi Y, Grace J (2000) Tropical forests and atmospheric carbon dioxide. Trees 15:332–337

    Google Scholar 

  • Manning P, Vries FT, Tallowin JR, Smith R, Mortimer SR, Pilgrim ES, Harrison KA, Wright DG, Quirk H, Benson J (2015) Simple measures of climate, soil properties and plant traits predict national-scale grassland soil carbon stocks. J Appl Ecol 52(5):1188–1196

    Article  Google Scholar 

  • Maxwell TM, Silva LCR, Horwath WR (2018) Integrating effects of species composition and soil properties to predict shifts in montane forests carbon-water relations. PNAS 1718864115

  • Meybeck M, Green P, Vörösmarty C (2001) A new typology for mountains and other relief classes: an application to global continental water resources and population distribution. Mt Res Dev 21(1):34–45

    Article  Google Scholar 

  • Minasny B, Malone BP, McBratney AB, Angers DA, Arrouays D, Chambers A, Chaplot V, Chen Z, Cheng K, Das BS, Field D, Gimona A, Hedly CB, Hong SY, Mandal B, Marchant BP, Martin M, McConkey BG, Mulder VL, O'Rourke S, Richer-de-Forges AC, Odeh I, Padarian J, Paustian K, Pan G, Poggio L, Savin I, Stolbovoy V, van Wesemael B, Winowiecki L (2017) Soil carbon 4 per mille. Geoderma 292:59–86

    Article  Google Scholar 

  • Mulder VL, de Bruin S, Schaepman ME, Mayr TR (2011) The use of remote sensing in soil terrain mapping—a review. Geoderma 162:1–19

    Article  Google Scholar 

  • Neff JC, Townsend AR, Gleixner G, Lehman SJ, Turnbull J, Bowman WD (2002) Variable effects of nitrogen additions on the stability and turnover of soil carbon. Nature 419:915–917

    Article  Google Scholar 

  • Peri PL, Ladd B, Pepper DA, Bonser SP, Laffan SW, Amelung W (2012) Carbon (δ13C) and nitrogen (δ15N) stable isotope composition in plant and soil in Southern Patagonia’s native forests. Glob Chang Biol 18:311–321

  • Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Chang Biol 6:317–328

    Article  Google Scholar 

  • Poulton P, Johnston J, Macdonald A, White R, Powlson D (2017) Major limitations to achieving “4 per 1000” increase in soil organic carbon stock in temperate regions: evidence from long-term experiments at Rothamsted Research, United Kingdom. Glob Chang Biol 2018:1–22

    Google Scholar 

  • Powers JS, Corre MD, Twine TE, Veldkamp E (2011) Geographic bias of field observations of soil carbon stocks with tropical land-use changes precludes spatial extrapolation. Proc Natl Acad Sci 108(15):6318–6322

    Article  Google Scholar 

  • Preger AC, Kösters R, Du Preez CC, Brodowski S, Amelung W (2010) Carbon sequestration in secondary pasture soils: a chronosequence study in the South African Highveld. Eur J Soil Sci 61:551–562

    Article  Google Scholar 

  • Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992) Special paper: a global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr 19:117–134

    Article  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for Biologists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rabbi SMF, Tighe M, Delgado-Baquerizo M, Cowie A, Robertson F, Dalal R, Page K, Crawford D, Wilson BR, Schwenke G, McLeod M, Badgery W, Dang YP, Bell M, O’Leary G, Liu DL, Baldock J (2015) Climate and soil properties limit the positive effects of land use reversion on carbon storage in Eastern Australia. Sci Rep 5:17866

    Article  Google Scholar 

  • Robles MD, Burke IC (1998) Soil organic matter recovery on conservation reserve program fields in southeastern Wyoming. Soil Sci Soc Am J 62:725–730

    Article  Google Scholar 

  • Roman-Sanchez A, Vanwalleghm T, Peña A, Giráldez JV (2018) Controls on soil carbon storage from topography and vegetation in a rocky, semi-arid landscapes. Geoderma 311:159–166

    Article  Google Scholar 

  • Ryan CM, Hill T, Woollen E, Ghee C, Mitchard E, Cassells G, Grace J, Woodhouse IH, Williams M (2012) Quantifying small-scale deforestation and forest degradation in African woodlands using radar imagery. Glob Chang Biol 18(1):243–257

    Article  Google Scholar 

  • Sala OE, Parton WJ, Joyce LA, Lauenroth W (1988) Primary production of the central grassland region of the United States. Ecology 69:40–45

    Article  Google Scholar 

  • Sanderman J, Farquharson R, Baldock J (2010) Soil carbon sequestration potential: a review for Australian agriculture. A report prepared for Department of Climate Change and Energy Efficiency CSIRO: EP10121

  • Sanderman J, Hengl T, Fiske GJ (2017) Soil carbon debt of 12,000 years of human land use. PNAS 114:9575–9580

    Article  Google Scholar 

  • Scharlemann JP, Tanner EV, Hiederer R, Kapos V (2014) Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag 5(1):81–91

    Article  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knaber I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56

    Article  Google Scholar 

  • Sheil D, Ladd B, Silva LCR, Laffan SW, Van Heist M (2016) How are soil carbon and tropical biodiversity related? Environ Conserv 43:231–241

    Article  Google Scholar 

  • Silva LCR (2017) Carbon sequestration beyond tree longevity. Science 355:1141

    Article  Google Scholar 

  • Silva LCR, Sternberg LSL, Haridasan M, Hoffmann WA, Miralles-Wilhelm F, Franco AC (2008) Expansion of gallery forests into central Brazilian savannas. Glob Chang Biol 14:2108–2118

    Article  Google Scholar 

  • Silva LCR, Corrêa RS, Doane TA, Pereira EI, Horwath WR (2013) Unprecedented carbon accumulation in mined soils: the synergistic effect of resource input and plant species invasion. Ecol Appl 23:1345–1356

    Article  Google Scholar 

  • Silva LCR, Doane TA, Corrêa RS, Valverde V, Pereira EI, Horwath WR (2015) Iron-mediated stabilization of soil carbon amplifies the benefits of ecological restoration in degraded lands. Ecol Appl 5:1226–1234

    Article  Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O'Mara F, Rice C (2008) Greenhouse gas mitigation in agriculture. Philos Trans R Soc Lond B Biol Sci 363(1492):789–813

    Article  Google Scholar 

  • Soil Survey Staff (2011) Soil Survey Laboratory Information Manual. Soil Survey Investigations Report No. 45, Version 2.0. In: R. Burt (ed). U.S. Department of Agriculture, Natural Resources Conservation Service

  • Solomon D, Lehmann J, Kinyangi J, Amelung W, Lobe I, Ngoze S, Riha S, Pell A, Verchot LL, Mbugua D, Skjemstad J, Schäfer T (2007) Long-term impacts of anthropogenic perturbations on dynamics and speciation of organic carbon in tropical forest and subtropical grassland ecosystems. Glob Chang Biol 13:511–530

    Article  Google Scholar 

  • Stockmann U, Adams MA, Crawford JW, Field DJ, Henakaarchchi N, Jenkins M, Minasny B, McBratney AB, de Courcelles VDR, Singh K (2013) The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric Ecosyst Environ 164:80–99

    Article  Google Scholar 

  • Trabucco A, Zomer R (2009) Global aridity index (global-aridity) and global potential evapo-transpiration (global-PET) geospatial database. CGIAR Consortium for Spatial Information. Published online, available from the CGIAR-CSI GeoPortal at: http://www.csi.cgiar.org/(2009). Global Aridity Index (Global-Aridity) and Global Potential Evapo-Transpiration (Global-PET) Geospatial Database. In CGIAR Consortium for Spatial Information

  • Trabucco A, Zomer R (2010) Global soil water balance geospatial database. CGIAR Consortium for Spatial Information. Published online, available from the CGIAR-CSI GeoPortal at: http://www.cgiar-csi.org

  • UN-REDD (2016) Technical resource series 3: towards a common understanding of REDD+ under the UNFCCC. UN-REDD Programme Secretariatt

  • Wiesmeier M, Barthold F, Spörlein P, Geuß U, Hangen E, Reischl A, Schilling B, Angst G, Mv L, Kögel-Knabner I (2014) Estimation of total organic carbon storage and its driving factors in soils of Bavaria (southeast Germany). Geoderma Reg 1:67–78

    Article  Google Scholar 

  • Winsome T, Silva LCR, Scow CR, Doane TA, Power RF, Howarth WR (2017) Plant-microbe interactions regulate carbon and nitrogen accumulation in forest soils. For Ecol Manag 384:415–423

    Article  Google Scholar 

  • Zhang D, Hui D, Luo Y, Zhou G (2008) Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1:85–93

    Article  Google Scholar 

Download references

Acknowledgements

We thank INTA Argentina for supporting our work in Patagonia. Nils Borchard was placed as an integrated expert at the Centre for International Migration and Development (CIM). CIM is a joint venture of the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH and the International Placement Services (ZAV) of the German Federal Employment Agency (BA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Duarte-Guardia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 145 kb)

Electronic supplementary material

ESM 2

(XLSX 34.4 mb)

ESM 3

(XLS 2.68 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duarte-Guardia, S., Peri, P.L., Amelung, W. et al. Better estimates of soil carbon from geographical data: a revised global approach. Mitig Adapt Strateg Glob Change 24, 355–372 (2019). https://doi.org/10.1007/s11027-018-9815-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11027-018-9815-y

Keywords

Navigation