Skip to main content
Log in

Topological sub-structural molecular design (TOPS-MODE): a useful tool to explore key fragments of human \(\mathbf{A}_{3}\) adenosine receptor ligands

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Adenosine regulates tissue function by activating four G-protein-coupled adenosine receptors (ARs). Selective agonists and antagonists for \(\hbox {A}_{3}\) ARs have been investigated for the treatment of a variety of immune disorders, cancer, brain, and heart ischemic conditions. We herein present a QSAR study based on a Topological sub-structural molecular design (TOPS-MODE) approach, intended to predict the \(\hbox {A}_{3}\) ARs of a diverse dataset of 124 (94 training set/ 30 prediction set) adenosine derivatives. The final model showed good fit and predictive capability, displaying 85.1 % of the experimental variance. The TOPS-MODE approach afforded a better understanding and interpretation of the developed model based on the useful information extracted from the analysis of the contribution of different molecular fragments to the affinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jacobson KA, Gao ZG (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 5:247–264. doi:10.1038/nrd1983

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Fredholm BB, Ijzerman AP, Jacobson KA, Klotz KN, Linden J (2001) International union of pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552. doi:10.1124/pr.110.003285

  3. Cheong SL, Federico S, Venkatesan G, Mandel AL, Shao YM, Moro S, Spalluto G, Pastorin G (2013) The adenosine receptor as multifaceted therapeutic target: pharmacology, medicinal chemistry, and in silico approaches. Med Res Rev 33:235–335. doi:10.1002/med.20254

    Article  PubMed  CAS  Google Scholar 

  4. Borea PA, Gessi S, Bar-Yehuda S, Fishman P (2009) \({\rm A}_{3}\) adenosine receptor: pharmacology and role in disease. Handb Exp Pharmacol 193:297–327. doi:10.1007/978-3-540-89615-9_10

  5. Wang J, Drake L, Sajjadi F, Firestein GS, Mullane KM, Bullough DA (1997) Dual activation of adenosine \({\rm A}_{1}\) and \({\rm A}_{3}\) receptors mediates preconditioning of isolated cardiac myocytes. Eur J Pharmacol 320:241–248. doi:10.1016/S0014-2999(96)00901-6

  6. Kolachala VL, Bajaj R, Chalasani M, Sitaraman SV (2008) Purinergic receptors in gastrointestinal inflammation. Am J Physiol Gastrointest Liver Physiol 294:G401–410. doi:10.1152/ajpgi.00454.2007

    Article  PubMed  CAS  Google Scholar 

  7. Wan TC, Ge ZD, Tampo A, Mio Y, Bienengraeber MW, Tracey WR, Gross GJ, Kwok WM, Auchampach JA (2008) The \(\text{ A }_{3}\) adenosine receptor agonist CP-532,903 [N6-(2,5-dichlorobenzyl)-3’-aminoadenosine-5’-N-methylcarboxamide] protects against myocardial ischemia/reperfusion injury via the sarcolemmal ATP-sensitive potassium channel. J Pharmacol Exp Ther 324:234–243. doi:10.1124/jpet.107.127480

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Madi L, Ochaion A, Rath-Wolfson L, Bar-Yehuda S, Erlanger A, Ohana G, Harish A, Merimski O, Barer F, Fishman P (2004) The \(\text{ A }_{3}\) adenosine receptor is highly expressed in tumor versus normal cells: potential target for tumor growth inhibition. Clin Cancer Res 10:4472–4479. doi:10.1158/1078-0432.CCR-03-0651

    Article  PubMed  CAS  Google Scholar 

  9. Gao ZG, Jacobson KA (2007) Emerging adenosine receptor agonists. Expert Opin Emerg Drugs 12:479–492. doi:10.1517/14728214.12.3.479

    Article  PubMed  CAS  Google Scholar 

  10. Xu Z, Jang Y, Mueller RA, Norfleet EA (2006) IB-MECA and cardioprotection. Cardiovasc Cardiovasc Drug Rev 24:227–238. doi:10.1111/j.1527-3466.2006.00227.x

    Article  PubMed  CAS  Google Scholar 

  11. Müller CE (2003) Medicinal chemistry of adenosine \(\text{ A }_{3}\) receptor ligands. Curr Top Med Chem 3:445–462. doi:10.2174/1568026033392174

    Article  PubMed  Google Scholar 

  12. González MP, Terán C, Teijeira M, Helguera AM (2006) Quantitative structure activity relationships as useful tools for the design of new adenosine receptor ligands 1. Agonist. Curr Med Chem 13:2253–2266. doi:10.2174/092986706777935195

    Article  PubMed  Google Scholar 

  13. Estrada E (2008) How the parts organize in the whole? A top-down view of molecular descriptors and properties for QSAR and drug design. Mini Rev Med Chem 8:213–221. doi:10.2174/138955708783744128

    Article  PubMed  CAS  Google Scholar 

  14. Sharma S, Sharma BK, Sharma SK, Singh P, Prabhakar YS (2009) Topological descriptors in modeling the agonistic activity of human \(\text{ A }_{3}\) adenosine receptor ligands: the derivatives of 2-chloro-N(6)-substituted-4\(^{\prime }\)-thioadenosine-5\(^{\prime }\)-uronamide. Eur J Med Chem 44:1377–1382. doi:10.1016/j.ejmech.2008.09.022

    Article  PubMed  CAS  Google Scholar 

  15. Cabrera MA, González I, Fernández C, Navarro C, Bermejo MA (2006) A topological substructural approach for the prediction of P-glycoprotein substrates. J Pharm Sci 95:589–606. doi:10.1002/jps.20449

    Article  PubMed  CAS  Google Scholar 

  16. Estrada E, Molina E, Nodarse D, Uriarte E (2010) Structural contributions of substrates to their binding to P-glycoprotein. A TOPS-MODE approach. Curr Pharm Des 16:2676–2709. doi:10.2174/138161210792389243

    Article  PubMed  CAS  Google Scholar 

  17. Pérez-Garrido A, Helguera AM, Ruiz JM, Rentero PZ (2012) Topological sub-structural molecular design approach: radical scavenging activity. Eur J Med Chem 49:86–94. doi:10.1016/j.ejmech.2011.12.030

    Article  PubMed  Google Scholar 

  18. Garcia-Lorenzo A, Tojo E, Tojo J, Teijeira M, Rodriguez-Berrocal FJ, González MP, Martinez-Zorzano VS (2008) Cytotoxicity of selected imidazolium-derived ionic liquids in the human Caco-2 cell line. Sub-structural toxicological interpretation through a QSAR study. Green Chem 10:508–516. doi:10.1039/B718860A

    Article  CAS  Google Scholar 

  19. González MP, Terán C, Fall Y, Teijeira M, Besada P (2005) A radial distribution function approach to predict \(\text{ A }_{\rm 2B}\) agonist effect of adenosine analogues. Bioorg Med Chem 13:601–608. doi:10.1016/j.bmc.2004.10.063

    Article  PubMed  Google Scholar 

  20. González MP, Terán C, Teijeira M, Besada P (2005) Geometry, topology, and atom-weights assembly descriptors to predicting \(\text{ A }_{1}\) adenosine receptors agonists. Bioorg Med Chem Lett 15:2641–2645. doi:10.1016/j.bmcl.2005.03.028

    Article  PubMed  Google Scholar 

  21. González MP, Terán C, Teijeira M, González-Moa MJ (2005) GETAWAY descriptors to predicting \(\text{ A }_{\rm 2A}\) adenosine receptors agonists. Eur J Med Chem 40:1080–1086. doi:10.1016/j.ejmech.2005.04.014

    Article  PubMed  Google Scholar 

  22. González MP, Terán C, Teijeira M, Helguera AM (2006) Radial distribution function descriptors: an alternative for predicting \(\text{ A }_{\rm 2A}\) adenosine receptors agonists. Eur J Med Chem 41:56–62. doi:10.1016/j.ejmech.2005.08.004

    Article  PubMed  Google Scholar 

  23. González MP, Besada P, González Moa MJ, Teijeira M, Terán C (2008) New QSAR combined strategy for the design of \(\text{ A }_{1}\) adenosine receptor agonists. Bioorg Med Chem 16:1658–1675. doi:10.1016/j.bmc.2007.11.026

    Article  PubMed  Google Scholar 

  24. Cruz-Monteagudo M, Cordeiro MN, Teijeira M, González MP, Borges F (2010) Multidimensional drug design: simultaneous analysis of binding and relative efficacy profiles of N6-substituted-4-thioadenosines \(\text{ A }_{3}\) adenosine receptor agonists. Chem Biol Drug Des 75:607–618. doi:10.1111/j.1747-0285.2010.00971.x

    Article  PubMed  CAS  Google Scholar 

  25. Bonet I, Franco-Montero P, Rivero V, Teijeira M, Borges F, Uriarte E, Helguera Morales (2013) A classifier ensemble based on feature selection and diversity measures for predicting the affinity of \(\text{ A }_{\rm 2B}\) Adenosine receptor antagonists. J Chem Inf Model 53:3140–3155. doi:10.1021/ci300516w

    Article  PubMed  CAS  Google Scholar 

  26. González MP, Terán C, Teijeira M, Besada P, González-Moa MJ (2005) BCUT descriptors for predicting affinity toward \(\text{ A }_{3}\) adenosine receptors. Bioorg Med Chem Lett 15:3491–3495. doi:10.1016/j.bmcl.2005.05.122

    Article  PubMed  Google Scholar 

  27. González MP, Terán C, Teijeira M (2006) A topological function based on spectral moments for predicting affinity toward \(\text{ A }_{3}\) adenosine receptors. Bioorg Med Chem Lett 16:1291–1296. doi:10.1016/j.bmcl.2005.11.063

    Article  PubMed  Google Scholar 

  28. van Tilburg EW, von Frijtag Drabbe Künzel J, de Groote M, Vollinga RC, Lorenzen A, IJzerman AP (1999) N6,5’-Disubstituted adenosine derivatives as partial agonists for the human adenosine \(\text{ A }_{3}\) receptor. J Med Chem 42:1393–1400. doi:10.1021/jm981090+

    Article  PubMed  Google Scholar 

  29. Wanner MJ, JK Von Frijtag Drabbe Künzel, Ijzerman AP, Koomen GJ (2000) 2-Nitro analogues of adenosine and 1-deazaadenosine: synthesis and binding studies at the adenosine \(\text{ A }_{1}\), \(\text{ A }_{\rm 2A}\) and \(\text{ A }_{3}\) receptor subtypes. Bioorg Med Chem Lett 10:2141–2144. doi:10.1016/S0960-894X(00)00415-7

    Article  PubMed  CAS  Google Scholar 

  30. van Tilburg EW, Gremmen M, von Frijtag Drabbe Künzel J, de Groote M, IJzerman AP (2003) 2,8-Disubstituted adenosine derivatives as partial agonists for the adenosine \(\text{ A }_{\rm 2A}\) receptor. Bioorg Med Chem 11:2183–2192. doi:10.1016/S0968-0896(03)00123-8

    Article  PubMed  Google Scholar 

  31. van Tilburg EW, van der Klein PA, von Frijtag Drabbe Künzel J, de Groote M, Stannek C, Lorenzen A, IJzerman AP (2001) 5’-O-alkyl ethers of N,2-substituted adenosine derivatives: partial agonists for the adenosine \(\text{ A }_{1}\) and \(\text{ A }_{3}\) receptors. J Med Chem 44:2966–2975. doi:10.1021/jm001114o

    Article  PubMed  Google Scholar 

  32. van Tilburg EW, von Frijtag Drabbe Kunzel J, de Groote M, IJzerman AP (2002) 2,5’-Disubstituted adenosine derivatives: evaluation of selectivity and efficacy for the adenosine \(\text{ A }_{1}\), \(\text{ A }_{\rm 2A}\), and \(\text{ A }_{3}\) receptor. J Med Chem 45:420–429. doi:10.1021/jm010952v

    Article  PubMed  Google Scholar 

  33. Beukers MW, Wanner MJ, Von Frijtag Drabbe Künzel JK, Klaasse EC, IJzerman AP, Koomen GJ (2003) \(\text{ N }^{6}\)-cyclopentyl-2-(3-phenylaminocarbonyltriazene-1-yl)adenosine (TCPA), a very selective agonist with high affinity for the human adenosine \(\text{ A }_{1}\) receptor. J Med Chem 46:1492–1503. doi:10.1021/jm021074j

    Article  PubMed  CAS  Google Scholar 

  34. de Zwart M, de Groote M, van der Klein PAM, van Dun R, Bronsing R, Jacobien K, von Frijtag Drabbe Kunzel J, Ijzerman AP (2000) Phenyl-substituted \(\text{ N }^{6}\)-Phenyladenosines and \(\text{ N }^{6}\)-Phenyl-5\(^{\prime }\)-N-Ethylcarboxamidoadenosines with high activity at human adenosine \(\text{ A }_{\rm 2B}\) receptors. Drug Dev Res 49:85–93. doi:10.1002/(SICI)1098-2299(200002)49:23.0.CO;2-W

    Article  Google Scholar 

  35. Jacobson KA, Ji X, Li AH, Melman N, Siddiqui MA, Shin KJ, Marquez VE, Ravi RG (2000) Methanocarba analogues of purine nucleosides as potent and selective adenosine receptor agonists. J Med Chem 43:2196–2203. doi:10.1021/jm9905965

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. STATISTICA (Data Analysis Software System), Version 12 StatSoft Inc:Tulsa

  37. Dillon WR, Goldstein M (1984) Multivariate analysis: methods and applications. Wiley, New York

    Google Scholar 

  38. Bhatia MS, Ingale KB, Choudhari PB, Bhatia NM, Sawant RL (2009) Application quantum and physico chemical molecular descriptors utilizing principal components to study mode of anticoagulant activity of pyridyl chromen-2-one derivatives. Bioorg Med Chem 17:1654–1662. doi:10.1016/j.bmc.2008.12.055

    Article  PubMed  CAS  Google Scholar 

  39. Hemmateenejad B, Elyasi M (2009) A segmented principal component analysis-regression approach to quantitative structure-activity relationship modeling. Anal Chim Acta 646:30–38. doi:10.1016/j.aca.2009.05.003

    Article  PubMed  CAS  Google Scholar 

  40. Sun M, Zheng Y, Wei H, Chen J, Ji M (2009) QSAR studies on 4-anilino-3-quinolinecarbonitriles as Src kinase inhibitors using robust PCA and both linear and nonlinear models. J Enzyme Inhib Med Chem 24:1109–1116. doi:10.1080/14756360802632906

    Article  PubMed  CAS  Google Scholar 

  41. Estrada E (1995) Edge adjacency relationships and a novel topological index related to molecular volume. J Chem Inf Comput Sci 35:31–33. doi:10.1021/ci00023a004

    Article  CAS  Google Scholar 

  42. Estrada E (1996) Spectral moments of the edge adjacency matrix in molecular graphs. 1. Definition and applications to the prediction of physical properties of alkanes. J Chem Inf Comput Sci 36:844–849. doi:10.1021/ci950187r

    Article  CAS  Google Scholar 

  43. Estrada E (1997) Spectral moments of the edge-adjacency matrix of molecular graphs. 2. molecules containing heteroatoms and qsar applications. J Chem Inf Comput Sci 37:320–328. doi:10.1021/ci960113v

    Article  CAS  Google Scholar 

  44. Gutierrez Y, Estrada E (2002) ModesLab, Version 1.0 www.modeslab.com. Accessed 8 Dec 2014

  45. Weininger D (1988) Smiles, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 28:31–36. doi:10.1021/ci00057a005

    Article  CAS  Google Scholar 

  46. Todeschini R, Ballabio D, Consonni V, Mauri A, Pavan M (2004) Mobydigs computer software. Talete, Milano

    Google Scholar 

  47. Vedani A, Dobler M (2000) Multi-dimensional QSAR in drug research. Predicting binding affinities, toxicity and pharmacokinetic parameters. Prog Drug Res 55:105–135

    Article  PubMed  CAS  Google Scholar 

  48. Tropsha A, Zheng W (2001) Identification of the descriptor pharmacophores using variable selection QSAR: applications to database mining. Curr Pharm Des 7:599–612. doi:10.2174/1381612013397834

    Article  PubMed  CAS  Google Scholar 

  49. Hasegawa K, Funatsu K (2000) Partial least squares modeling and genetic algorithm optimization in quantitative structure-activity relationships. SAR QSAR Environ Res 11:189–209. doi:10.1080/10629360008033231

    Article  PubMed  CAS  Google Scholar 

  50. Vainio MJ, Johnson MS (2005) McQSAR: a multiconformational quantitative structure-activity relationship engine driven by genetic algorithms. J Chem Inf Model 45:1953–1961. doi:10.1021/ci0501847

    Article  PubMed  CAS  Google Scholar 

  51. Klein DJ, Randić M, Babić D, Lučić B, Nikolić S, Trinajstić N (1997) Hierarchical orthogonalization of descriptors. Int J Quant Chem 63:215–222. doi:10.1002/(SICI)1097-

  52. Lučić B, Nikolić S, Trinajstić N, Jurić D (1995) The structure-property models can be improved using the orthogonalized descriptors. J Chem Inf Comput Sci 35:532–538. doi:10.1021/ci00025a022

    Article  Google Scholar 

  53. Randić M (1991) Orthogonal molecular descriptors. New J Chem 15:517–525

    Google Scholar 

  54. Randić M (1991) Resolution of ambiguities in structure-property studies by use of orthogonal descriptors. J Chem Inf Comput Sci 31:311–320. doi:10.1021/ci00002a018

    Article  Google Scholar 

  55. Randić M (1991) Correlation of enthalpy of octanes with orthogonal connectivity indices. J Mol Struct 233:45–59. doi:10.1016/0166-1280(91)85053-A

    Article  Google Scholar 

  56. Eriksson L, Jaworska J, Worth AP, Cronin MT, McDowell RM, Gramatica P (2003) Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARS. Environ Health Perspect 111:1361–1375. doi:10.1289/ehp.5758

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Gramatica P (2007) Principles of QSAR models validation: internal and external. QSAR Comb Sci 26:694–701. doi:10.1002/qsar.200610151

    Article  CAS  Google Scholar 

  58. Netzeva TI, Worth A, Aldenberg T, Benigni R, Cronin MT, Gramatica P, Jaworska JS, Kahn S, Klopman G, Marchant CA, Myatt G, Nikolova-Jeliazkova N, Patlewicz GY, Perkins R, Roberts D, Schultz T, Stanton DW, van de Sandt JJ, Tong W, Veith G, Yang C (2005) Current status of methods for defining the applicability domain of (quantitative) structure activity relationships. Altern Lab Anim 33:155–173

    PubMed  CAS  Google Scholar 

  59. Estrada E, Patlewicz G, Gutierrez Y (2004) From knowledge generation to knowledge archive. A general strategy using TOPS-MODE with DEREK to formulate new alerts for skin sensitization. J Chem Inf Comput Sci 44:688–698. doi:10.1021/ci0342425

  60. JChem (2012) ChemAxon www.chemaxon.com. Accessed 8 Sep 2014

  61. Baldi P, Brunak S, Chauvin Y, Andersen CA, Nielsen H (2000) Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16:412–424. doi:10.1093/bioinformatics/16.5.412

    Article  PubMed  CAS  Google Scholar 

  62. Ivanov AA, Palyulin VA, Zefirov NS (2007) Computer aided comparative analysis of the binding modes of the adenosine receptor agonists for all known subtypes of adenosine receptors. J Mol Graph Model 25:740–754. doi:10.1016/j.jmgm.2006.06.004

    Article  PubMed  CAS  Google Scholar 

  63. Mills N (2006) ChemDraw Ultra 10.0. J Am Chem Soc 128:13649–13650

    Article  CAS  Google Scholar 

  64. Jaworska J, Nikolova-Jeliazkova N, Aldenberg T (2005) QSAR applicability domain estimation by projection of the training set descriptor space: a review. Altern Lab Anim 33:445–459

    PubMed  CAS  Google Scholar 

  65. Abraham MH, Gil-Lostes J, Fatemi M (2009) Prediction of milk/plasma concentration ratios of drugs and environmental pollutants. Eur J Med Chem 44:2452–2458. doi:10.1016/j.ejmech.2009.01.009

    Article  PubMed  CAS  Google Scholar 

  66. Abraham MH, Ibrahim A, Acree WE Jr (2008) Air to lung partition coefficients for volatile organic compounds and blood to lung partition coefficients for volatile organic compounds and drugs. Eur J Med Chem 43:478–485. doi:10.1016/j.ejmech.2007.04.002

    Article  PubMed  CAS  Google Scholar 

  67. Mintz C, Clark M, Acree WE Jr, Abraham MH (2007) Abraham Enthalpy of solvation correlations for gaseous solutes dissolved in water and in 1-octanol based on the Abraham model. J Chem Inf Model 47:115–121. doi:10.1021/ci600402n

    Article  PubMed  CAS  Google Scholar 

  68. Discovery Studio Visualizer http://accelrys.com/products/discovery-studio/visualization-download.php. Accessed 8 July 2007

  69. Kim SK, Gao ZG, Jeong LS, Jacobson KA (2006) Docking studies of agonists and antagonists suggest an activation pathway of the \(\text{ A }_{3}\) adenosine receptor. J Mol Graph Model 25:562–577. doi:10.1016/j.jmgm.2006.05.004

  70. Melman A, Gao ZG, Kumar D, Wan TC, Gizewski E, Auchampach JA, Jacobson KA (2008) Design of (N)-methanocarba adenosine 5\(^{\prime }\)-uronamides as species-independent \(\text{ A }_{3}\) receptor-selective agonists. Bioorg Med Chem Lett 18:2813–2819. doi:10.1016/j.bmcl.2008.04.001

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Xunta de Galicia (PGIDIT07PXIB and INCITE08ENA314019ES) and the Portuguese Fundação para a Ciência e a Tecnologia (FCT) (SFRH/BPD/63946/2009) for financial support. We also thank the owners of the MODESLAB for free donation of this software to our investigation group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Teijeira.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 2126 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saíz-Urra, L., Teijeira, M., Rivero-Buceta, V. et al. Topological sub-structural molecular design (TOPS-MODE): a useful tool to explore key fragments of human \(\mathbf{A}_{3}\) adenosine receptor ligands. Mol Divers 20, 55–76 (2016). https://doi.org/10.1007/s11030-015-9617-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-015-9617-z

Keywords

Navigation