Skip to main content
Log in

Sequencing and expression analysis of salt-responsive miRNAs and target genes in the halophyte smooth cordgrass (Spartina alternifolia Loisel)

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

MicroRNAs have been shown to be involved in regulating plant’s response to environmental stresses, including salinity. There is no report yet on the miRNA-mediated posttranscriptional regulation of salt stress response of a grass halophyte by miRNAs. Here we report on the deep-sequencing followed by expression validation through (s)qRT-PCR of a selected set of salt-responsive miRNAs and their targets of the salt marsh monocot halophyte smooth cordgrass (Spartina alterniflora Loisel). Expression kinetics study of 12 miRNAs showed differential up/down-regulation in leaf and root tissues under salinity. Induction of expression of six putative novel microRNAs with high read counts in the sequence library suggested that the halophyte grass may possess different/novel gene posttranscriptional regulation of its salinity adaptation. Similarly, expression analysis of target genes of four selected miRNAs showed temporal and spatial variation in the up/down-regulation of their transcript accumulation under salt stress. The expression levels of miRNAs and their respective targets were coherent, non-coherent, or semi-coherent type. Understanding the gene regulation mechanism(s) at the miRNA level will broaden our fundamental understanding of the biology of the salt stress tolerance of the halophyte and provide novel positive regulators of salt stress tolerance for downstream research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dong Z, Shi Wang Y, Chen L, Cai Z, Wang Y, Jin J, Li X (2013) Identification and dynamic regulation of microRNAs involved in salt stress responses in functional soybean nodules by high-throughput sequencing. Int J Mol Sci 14:2717–2738

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Marschner H (1990) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  3. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  4. Da Silva EC, Nogueira RJMC, de Araijo FP, de Melo NF, de Azevedi Neto AD (2008) Physiological responses to salt stress in young umbu plants. Environ Exp Bot 63:147–157

    Article  Google Scholar 

  5. Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21:79–102

    Article  CAS  Google Scholar 

  6. Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    Article  CAS  Google Scholar 

  7. Joshi R, Pilcher W, Ramanarao MV, Bedre R, Sanchez L, Zandkarimi H, Baisakh N (2015) Salt adaptation mechanisms of halophytes: improvement of salt tolerance in crop plants. In: Pandey G (ed) Elucidation of abiotic stress signaling in plants. Springer Publ., (in press)

  8. Tester M, Bacic A (2005) Abiotic stress tolerance in grasses. From model plants to crop plants. Plant Physiol 137:791–793

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Longstreth DJ, Strain BR (1977) Effects of salinity and illumination on photosynthesis and water balance of Spartina alterniflora Loisel. Oecologia 31:191–199

    Article  Google Scholar 

  10. Bertness MD (1985) Fiddler crab regulation of Spartina alterniflora production on a New England salt marsh. Ecology 66:1042–1055

    Article  Google Scholar 

  11. Adam P (1990) Plants and salinity in salt marsh ecology. Cambridge University Press, New York

    Google Scholar 

  12. Maricle BR, Lee RW (2002) Aerenchyma developoment and oxygen transport in the estuarine cordgrasses Spartina alterniflora and S. anglica. Aquat Bot 74:109–120

    Article  Google Scholar 

  13. Wan S, Qin P, Liu J, Zhou H (2009) The positive and negative effects of exotic Spartina alterniflora in China. Ecol Eng 35:444–452

    Article  Google Scholar 

  14. Baisakh N, Subudhi P, Varadwaj P (2008) Primary responses to salt stress in a halophyte Spartina alterniflora (Loisel). Funct Integr Genomics 8:287–300

    Article  CAS  PubMed  Google Scholar 

  15. Marschner H (1995) Mineral nutrition of plants, 2nd edn. Academic press, Boston

    Google Scholar 

  16. Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

  17. Baisakh N, Subudhi PK, Parami NP (2006) cDNA-AFLP analysis reveals differential gene expression in response to salt stress in a halophyte Spartina alterniflora Loisel. Plant Sci 170:1141–1149

    Article  CAS  Google Scholar 

  18. Baisakh N, RamanaRao MV, Rajasekaran K, Subudhi P, Galbraith D, Jonda J, Vanier C, Pereira A (2012) Enhanced salt stress tolerance of rice plants expressing a vacuolar H+-ATPase subunit c1 (SaVHAc1) gene from a halophyte grass Spartina alterniflora Löisel. Plant Biotechnol J 10:453–464

    Article  CAS  PubMed  Google Scholar 

  19. Bedre R, Ramanarao MV, Srivastava S, Solis J, Sanchez L, Pereira A, Baisakh N (2015) Genome-wide trancriptome profiling of salt-induced genes in the halophyte grass Spartina alterniflora (Loisel). PLOS One (in press)

  20. Du T, Zamore PD (2005) microPrimer: the biogenesis and function of microRNA. Development 132:4645–4652

    Article  CAS  PubMed  Google Scholar 

  21. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  22. Chen XA (2004) microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025

    Article  CAS  PubMed  Google Scholar 

  23. Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190

    Article  CAS  PubMed  Google Scholar 

  24. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  25. Lewis BP, Shih IH, Jones-Rhoades M, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798

    Article  CAS  PubMed  Google Scholar 

  26. Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  PubMed  Google Scholar 

  27. Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500

    Article  CAS  PubMed  Google Scholar 

  28. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Cuperus JT, Fahlgren N, Carrington JC (2011) Evolution and functional diversification of MIRNA genes. Plant Cell 23:431–442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Frazier TP, Sun G, Burklew CE, Zhang B (2011) Salt and drought stresses induce the aberrant expression of microRNA genes in tobacco. Mol Biotechnol 49:159–165

    Article  CAS  PubMed  Google Scholar 

  31. Pant BD, Musialak-Lange M, Nuc P, May P, Buhtz A, Kehr J, Walther D, Scheible WR (2009) Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real time polymerase chain reaction profiling and small RNA sequencing. Plant Physiol 150:1541–1555

    Article  PubMed Central  PubMed  Google Scholar 

  32. Zhao B, Ge L, Liang R, Li W, Ruan K, Lin H, Jin Y (2009) Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Mol Biol 10:29

    Article  PubMed Central  PubMed  Google Scholar 

  33. Zhao M, Tai H, Sun S, Zhang F, Xu Y, Li WX (2012) Cloning and characterization of maize miRNAs involved in responses to nitrogen deficiency. PLoS One 7:e29669

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Zhao YY, Guo CJ, Li XJ, Duan WW, Ma CY, Chan HM, Wen YL, Lu WJ, Xiao K (2014) Characterization and expression pattern analysis of microRNAs in wheat under drought stress. Biol Plant 10:1573–8264

    Google Scholar 

  35. Kentar M, Lucas SJ, Budak H (2011) miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta 233:471–484

    Article  Google Scholar 

  36. Nischal L, Mohsin M, Khan I, Kardam H, Wadhwa A, Abrol YP, Iqbal M, Ahmad A (2012) Identification and comparative analysis of microRNAs associated with low-N tolerance in rice genotypes. PLoS One 7:e50261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Zhou X, Wang G, Zhang W (2007) UV-B responsive microRNA gene in Arabidopsis thaliana. Mol Syst Biol 3:103

    Article  PubMed Central  PubMed  Google Scholar 

  38. Lu S, Sun YH, Chiang VL (2008) Stress-responsive microRNAs in Populus. Plant J 55:131–151

    Article  CAS  PubMed  Google Scholar 

  39. Zhuang Y, Zhou XH, Liu J (2014) Conserved miRNAs and their response to salt stress in wild eggplant (Solanum linnaeanum) roots. Int J Mol Sci 15:839–849

    Article  PubMed Central  PubMed  Google Scholar 

  40. Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y (2009) Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot 103:29–38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray based analysis of stress-responsive microRNAs in Arabidopsis thaliana. RNA 14:836–843

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Gao P, Bai X, Yang L, Lv D, Li Y, Cai H, Ji W, Guo D, Zhu Y (2010) Over-expression of osa-MIR396c decreases salt and alkali stress tolerance. Planta 231:991–1001

    Article  CAS  PubMed  Google Scholar 

  44. Gao P, Bai X, Yang L, Lv D, Pan X, Li Y, Cai H, Ji W, Chen Q, Zhu Y (2011) Osa-MIR393: a salinity- and alkaline stress-related microRNA gene. Mol Biol Rep 38:237–242

    Article  CAS  PubMed  Google Scholar 

  45. Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687

    Article  CAS  PubMed  Google Scholar 

  46. Jones-Rhoades MW, Bartel DP (2004) computational identification of plant miRNAs and their targets, including a stress-induced miRNAs. Mol Cell 14:787–799

    Article  CAS  PubMed  Google Scholar 

  47. Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK (2005) A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol 15:2038–2043

    Article  CAS  PubMed  Google Scholar 

  48. Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H, Ruan K, Jin Y (2007) Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun 354:585–590

    Article  CAS  PubMed  Google Scholar 

  50. Zhou X, Sunkar R, Jin H, Zhu JK, Zhang W (2009) Genome-wide identification and analysis of small RNAs from natural antisense transcript in Oryza sativa. Genome Res 19:70–78

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Sunkar R, Zhou X, Zheng Y, Zhang W, Zhu JK (2008) Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol 8:1–17

    Article  Google Scholar 

  52. Paul S, Kundu A, Pal A (2011) Identification and validation of conserved microRNAs along with their differential expression in roots of Vigna unguiculata grown under salt stress. Plant Cell Tissue Organ Cult 105:233–242

    Article  CAS  Google Scholar 

  53. Wei JZ, Tirajoh A, Effendy J, Plant AL (2000) Characterization of salt-induced changes in gene expression in tomato (Lycopersicon esculentum) roots and the role played by abscisic acid. Plant Sci 159:135–148

    Article  CAS  PubMed  Google Scholar 

  54. Cai X, Davis EJ, Ballif J, Liang M, Bushman E, Haroldsen V, Torabinejad J, Wu Y (2006) Mutant identification and characterization of the laccase gene family in Arabidopsis. J Exp Bot 57:2563–2569

    Article  CAS  PubMed  Google Scholar 

  55. Liang M, Haroldsen V, Cai X, Wu Y (2006) Expression of a putative laccase gene, ZmLAC1, in maize primary roots under stress. Plant Cell Environ 29:746–753

    Article  CAS  PubMed  Google Scholar 

  56. De Paola D, Cattonaro F, Pignone D, Sonnante G (2012) The miRNAome of globe artichoke: conserved and novel micro RNAs and target analysis. BMC Genomics 13:41

    Article  PubMed Central  PubMed  Google Scholar 

  57. Zhang Z, Wei L, Zou X, Tao Y, Liu Z, Zheng Y (2008) Submergence responsive microRNAs are potentially involved in the regulation of morphological and metabolic adaptations in maize root cells. Ann Bot 102:509–519

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Ferreira TH, Gentile A, Vilela RD, Costa GGL, Dias LI, Endres L, Menossi M (2012) microRNAs associated with drought response in the bioenergy crop sugarcane (Saccharum spp). PLoS One 7:e46703

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Liu B, Li P, Li X, Liu C, Cao S, Chu C, Cao X (2005) Loss of function of OsDCL1 affects microRNA accumulation and causes developmental defects in rice. Plant Physiol 139:296–305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Abdel-Ghany SE, Pilon M (2008) MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem 283:15932–15945

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Pignocchi C, Kiddle G, Hernandez I, Foster SJ, Asensi A, Taybi T, Barnes J, Foyer CH (2006) Ascorbate oxidase dependent changes in the redox state of the apoplast modulate gene transcript accumulation leading to modified hormone signaling and orchestration of defense processes in tobacco. Plant Physiol 141:423–435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Jeong DH, German MA, Rymarguis LA, Thatcher SR, Green PJ (2010) Abiotic stress-associated miRNAs: detection and functional analysis. Methods Mol Biol 592:203–230

    Article  CAS  PubMed  Google Scholar 

  63. Zhang B (2015) MicroRNA: a new target for improving plant tolerance to abiotic stress. J Exp Bot 66:1749–1761. doi:10.1093/jxb/erv013

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported by a special Grant from the USDA-NIFA. The manuscript has been approved for publication by the Louisiana Agricultural Experimental Station as MS# 2015-306-22457.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niranjan Baisakh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 36971 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zandkarimi, H., Bedre, R., Solis, J. et al. Sequencing and expression analysis of salt-responsive miRNAs and target genes in the halophyte smooth cordgrass (Spartina alternifolia Loisel). Mol Biol Rep 42, 1341–1350 (2015). https://doi.org/10.1007/s11033-015-3880-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-015-3880-z

Keywords

Navigation