Skip to main content
Log in

Effect of salt stress on the genes expression of the vacuolar H+ -pyrophosphatase and Na+/H+  antiporter in Rubia tinctorum

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Salinity which covers vast areas of the world is increasing every year. But some plants like madder can grow in these areas. Madder (Rubia tinctorum) is a perennial plant species from the Rubiaceae family. In this study, madder plants were first treated by different concentration of NaCl (100, 200, 300, and 400 mM). Then gene expression of salinity stress was studied. For gene study, vacuolar H+-pyrophosphatase pump (AVP) and tonoplast Na+/H+ antiporters (NHX) from madder plant were isolated and sequenced. Analyzing protein sequences of these genes demonstrated that the protein sequences have high similarity with the same genes in other plants. Constructing phylogenetic trees based on the protein sequences of the AVP and NHX genes, we found high similarity with Coffea arabica and Capsicum annuum, respectively. Studying gene expression of the AVP and NHX under the condition of salt stress revealed that the genes were up-regulated, which continues up to 400 mM of salt concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Koocheki A, Mohalati MN (1994) Feed value of some halophytic range plants of arid regions of Iran. In: Squires V, Ayoub AT (eds) Halophytes as a resource for livestock and for rehabilitation of degraded lands. Springer, New York, pp 249–253

    Chapter  Google Scholar 

  2. Chhabra R (2017) Soil salinity and water quality. Routledge, London

    Book  Google Scholar 

  3. Naidoo G, Naidoo Y (2001) Effects of salinity and nitrogen on growth, ion relations and proline accumulation in Triglochin bulbosa. Wetl Ecol Manage 9(6):491–497

    Article  CAS  Google Scholar 

  4. Asch F, Dingkuhn M, Dorffling K (2000) Salinity increases CO2 assimilation but reduces growth in field-grown, irrigated rice. Plant Soil 218(1–2):1

    Article  CAS  Google Scholar 

  5. Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86(3):407–421

    CAS  Google Scholar 

  6. Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444(2):139–158

    Article  CAS  Google Scholar 

  7. Jakab G, Ton J, Flors V, Zimmerli L, Métraux J-P, Mauch-Mani B (2005) Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses. Plant Physiol 139(1):267–274

    Article  CAS  Google Scholar 

  8. Zhu J-K (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6(5):441–445

    Article  CAS  Google Scholar 

  9. Nass R, Cunningham KW, Rao R (1997) Intracellular sequestration of sodium by a novel Na +/H + exchanger in yeast is enhanced by mutations in the plasma membrane H + -ATPase insights into mechanisms of sodium tolerance. J Biol Chem 272(42):26145–26152

    Article  CAS  Google Scholar 

  10. Palmgren MG (2001) Plant plasma membrane H + -ATPases: powerhouses for nutrient uptake. Annu Rev Plant Biol 52(1):817–845

    Article  CAS  Google Scholar 

  11. Kumar T, Khan MR, Abbas Z, Ali GM (2014) Genetic improvement of sugarcane for drought and salinity stress tolerance using Arabidopsis vacuolar pyrophosphatase (AVP1) gene. Mol Biotechnol 56(3):199–209

    Article  CAS  Google Scholar 

  12. Himabindu Y, Chakradhar T, Reddy MC, Kanygin A, Redding KE, Chandrasekhar T (2016) Salt-tolerant genes from halophytes are potential key players of salt tolerance in glycophytes. Environ Exp Bot 124:39–63

    Article  CAS  Google Scholar 

  13. Baghalian K, Maghsodi M, Naghavi MR (2010) Genetic diversity of Iranian madder (Rubia tinctorum) populations based on agro-morphological traits, phytochemical content and RAPD markers. Ind Crops Prod 31(3):557–562

    Article  CAS  Google Scholar 

  14. Sepaskhah AR, Beirouti Z (2012) Effect of irrigation interval and water salinity on growth of madder (Rubina tinctorum L.). Int J Plant Prod 3(3):1–16

    Google Scholar 

  15. Bown D (1995) The Royal Horticultural Society encyclopedia of herbs & their uses. Dorling Kindersley Limited, London

    Google Scholar 

  16. Aboud AS (2010) HPLC analysis of Rubia tinctorum and its effect of methanol and aqueous extract on bacteria isolated from burns infection. J Al-Nahrain Univ Sci 13(4):166–175

    Article  Google Scholar 

  17. A. D. Niebuhr, “Herbs of Greece,” 1970

  18. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  Google Scholar 

  19. Nicot N, Hausman J-F, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56(421):2907–2914

    Article  CAS  Google Scholar 

  20. Sekhar K, Priyanka B, Reddy VD, Rao KV (2010) Isolation and characterization of a pigeonpea cyclophilin (CcCYP) gene, and its over-expression in Arabidopsis confers multiple abiotic stress tolerance. Plant, Cell Environ 33(8):1324–1338

    CAS  Google Scholar 

  21. Guan B, Hu Y, Zeng Y, Wang Y, Zhang F (2011) Molecular characterization and functional analysis of a vacuolar Na +/H + antiporter gene (HcNHX1) from Halostachys caspica. Mol Biol Rep 38(3):1889–1899

    Article  CAS  Google Scholar 

  22. Chen ZC et al (2017) A magnesium transporter OsMGT1 plays a critical role in salt tolerance in rice. Plant Physiol 174(3):1837–1849

    Article  CAS  Google Scholar 

  23. Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19(6):371–379

    Article  CAS  Google Scholar 

  24. Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167(3):645–663

    Article  CAS  Google Scholar 

  25. Niu X, Narasimhan ML, Salzman RA, Bressan RA, Hasegawa PM (1993) NaCl regulation of plasma membrane H + -ATPase gene expression in a glycophyte and a halophyte. Plant Physiol 103(3):713–718

    Article  CAS  Google Scholar 

  26. Gaxiola RA et al (2001) Drought-and salt-tolerant plants result from overexpression of the AVP1 H + -pump. Proc Natl Acad Sci 98(20):11444–11449

    Article  CAS  Google Scholar 

  27. Brini F, Hanin M, Mezghani I, Berkowitz GA, Masmoudi K (2007) Overexpression of wheat Na +/H + antiporter TNHX1 and H + -pyrophosphatase TVP1 improve salt-and drought-stress tolerance in Arabidopsis thaliana plants. J Exp Bot 58(2):301–308

    Article  CAS  Google Scholar 

  28. Fukuda A et al (2004) Function, intracellular localization and the importance in salt tolerance of a vacuolar Na +/H + antiporter from rice. Plant Cell Physiol 45(2):146–159

    Article  CAS  Google Scholar 

  29. Huang Y et al (2017) Enhanced growth performance and salinity tolerance in transgenic switchgrass via overexpressing vacuolar Na + (K +)/H + antiporter gene (PvNHX1). Front Plant Sci 8:458

    PubMed  PubMed Central  Google Scholar 

  30. Tian N, Wang J, Xu ZQ (2011) Overexpression of Na +/H + antiporter gene AtNHX1 from Arabidopsis thaliana improves the salt tolerance of kiwifruit (Actinidia deliciosa). S Afr J Bot 77(1):160–169

    Article  CAS  Google Scholar 

  31. Vera-Estrella R, Barkla BJ, García-Ramírez L, Pantoja O (2005) Salt stress in Thellungiella halophila activates Na + transport mechanisms required for salinity tolerance. Plant Physiol 139(3):1507–1517

    Article  CAS  Google Scholar 

  32. Meng L, Li S, Guo J, Guo Q, Mao P, Tian X (2017) Molecular cloning and functional characterisation of an H + -pyrophosphatase from Iris lactea. Sci Rep 7(1):17779

    Article  Google Scholar 

  33. Gao F, Gao Q, Duan X, Yue G, Yang A, Zhang J (2006) Cloning of an H + -PPase gene from Thellungiella halophila and its heterologous expression to improve tobacco salt tolerance. J Exp Bot 57(12):3259–3270

    Article  CAS  Google Scholar 

  34. Shen G et al (2015) Co-overexpression of AVP1 and AtNHX1 in cotton further improves drought and salt tolerance in transgenic cotton plants. Plant Mol Biol Rep 33(2):167–177

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazem Kamali Aliabad.

Ethics declarations

Conflict of interest

The authors sincerely declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toranj, S., Aliabad, K.K., Abbaspour, H. et al. Effect of salt stress on the genes expression of the vacuolar H+ -pyrophosphatase and Na+/H+  antiporter in Rubia tinctorum. Mol Biol Rep 47, 235–245 (2020). https://doi.org/10.1007/s11033-019-05124-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-05124-8

Keywords

Navigation