Skip to main content

Advertisement

Log in

Mutation of Beclin1 acetylation site at K414 alleviates high glucose-induced podocyte impairment in the early stage of diabetic nephropathy by inhibiting hyperactivated autophagy

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Our group recently reported that a mutation of the novel Beclin1 K414R acetylation site impacts the stability of Beclin1 protein, which decreases autophagy in adipocytes and further impedes adipocyte differentiation and lipolysis. This study was to explore whether Beclin1 acetylation plays a role in the early renal injury induced by high glucose and to further investigate the K414R mutation site in podocytes.

Methods

Male Sprague–Dawley rats were randomized to con (control) and diabetic nephropathy (DN) groups. The DN group was induced by a single 55 mg/kg intraperitoneal injection of streptozotocin and fed a high-fat and high-sugar diet (the con group received an equal volume of the vehicle and fed a plain diet), after 3 days of induction, blood glucose levels were measured to confirm the onset of diabetes. Then, at weeks 0 and 4, the biochemical index was assayed and renal cortex tissues were harvested. MPC5 podocytes were cultured in vitro. Beclin1 (K414R)-pLVX-ZsGreen1-N1(wild-type or mutant) lentiviral plasmids were transfected into podocytes. Western blot or immunoprecipitation was used to test proteins or the acetylation levels respectively, and immunohistochemistry was used to analyze morphological changes of podocytes. Immunofluorescence was used to detect the aggregation of LC3 puncta.

Results

The acetylation level of Beclin1 was upregulated with podocyte injury exacerbated in high glucose at 24 h and that a mutation at K414R could inhibit hyperactivated autophagy, which ameliorated podocyte impairment.

Conclusion

These findings suggest that the acetylation site at K414 is a critical molecule and drug target and that further research into this area is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data are available from the corresponding author on reasonable request.

Material availability

Data are available from the corresponding author on reasonable request.

References

  1. Torban E, Braun F, Wanner N, Takano T, Goodyer PR, Lennon R, Ronco P, Cybulsky AV, Huber TB (2019) From podocyte biology to novel cures for glomerular disease. Kidney Int 96:850–861. https://doi.org/10.1016/j.kint.2019.05.015

    Article  PubMed  Google Scholar 

  2. Kobayashi R, Kamiie J, Yasuno K, Ogihara K, Shirota K (2011) Expression of nephrin, podocin, α-actinin-4 and α3-integrin in canine renal glomeruli. J Comp Pathol 145:220–225. https://doi.org/10.1016/j.jcpa.2011.01.007

    Article  CAS  PubMed  Google Scholar 

  3. Lin Q, Banu K, Ni Z, Leventhal JS, Menon MC (2021) Podocyte autophagy in homeostasis and disease. J Clin Med. https://doi.org/10.3390/jcm10061184

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bork T, Liang W, Yamahara K, Lee P, Tian Z, Liu S, Schell C, Thedieck K, Hartleben B, Patel K, Tharaux PL, Lenoir O, Huber TB (2020) Podocytes maintain high basal levels of autophagy independent of mtor signaling. Autophagy 16:1932–1948. https://doi.org/10.1080/15548627.2019.1705007

    Article  CAS  PubMed  Google Scholar 

  5. Hartleben B, Gödel M, Meyer-Schwesinger C, Liu S, Ulrich T, Köbler S, Wiech T, Grahammer F, Arnold SJ, Lindenmeyer MT, Cohen CD, Pavenstädt H, Kerjaschki D, Mizushima N, Shaw AS, Walz G, Huber TB (2010) Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J Clin Invest 120:1084–1096. https://doi.org/10.1172/jci39492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cao AL, Wang L, Chen X, Wang YM, Guo HJ, Chu S, Liu C, Zhang XM, Peng W (2016) Ursodeoxycholic acid and 4-phenylbutyrate prevent endoplasmic reticulum stress-induced podocyte apoptosis in diabetic nephropathy. Lab Invest 96:610–622. https://doi.org/10.1038/labinvest.2016.44

    Article  CAS  PubMed  Google Scholar 

  7. Lenoir O, Jasiek M, Hénique C, Guyonnet L, Hartleben B, Bork T, Chipont A, Flosseau K, Bensaada I, Schmitt A, Massé JM, Souyri M, Huber TB, Tharaux PL (2015) Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis. Autophagy 11:1130–1145. https://doi.org/10.1080/15548627.2015.1049799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen X, Pan Z, Fang Z, Lin W, Wu S, Yang F, Li Y, Fu H, Gao H, Li S (2018) Omega-3 polyunsaturated fatty acid attenuates traumatic brain injury-induced neuronal apoptosis by inducing autophagy through the upregulation of SIRT1-mediated deacetylation of Beclin-1. J Neuroinflamm 15:310. https://doi.org/10.1186/s12974-018-1345-8

    Article  CAS  Google Scholar 

  9. Esteves AR, Filipe F, Magalhães JD, Silva DF, Cardoso SM (2019) The role of beclin-1 acetylation on autophagic flux in Alzheimer’s disease. Mol Neurobiol 56:5654–5670. https://doi.org/10.1007/s12035-019-1483-8

    Article  CAS  PubMed  Google Scholar 

  10. Sun T, Li X, Zhang P, Chen WD, Zhang HL, Li DD, Deng R, Qian XJ, Jiao L, Ji J, Li YT, Wu RY, Yu Y, Feng GK, Zhu XF (2015) Acetylation of beclin 1 inhibits autophagosome maturation and promotes tumour growth. Nat Commun 6:7215. https://doi.org/10.1038/ncomms8215

    Article  PubMed  Google Scholar 

  11. Li C, Xu J, Yu Q, Wang P, Dong B, Shen L, Wang Q, Li S, Yang Y, Deng Y (2021) Mutation of the novel acetylation site at K414R of BECN1 is involved in adipocyte differentiation and lipolysis. J Cell Mol Med. https://doi.org/10.1111/jcmm.16692

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG (2010) Animal research: reporting in vivo experiments: the ARRIVE guidelines. Br J Pharmacol 160:1577–1579. https://doi.org/10.1111/j.1476-5381.2010.00872.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang L, Du Y, Lu M, Li T (2012) ASEB: a web server for KAT-specific acetylation site prediction. Nucleic Acids Res 40:W376–W379. https://doi.org/10.1093/nar/gks437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li JJ, Kwak SJ, Jung DS, Kim JJ, Yoo TH, Ryu DR, Han SH, Choi HY, Lee JE, Moon SJ, Kim DK, Han DS, Kang SW (2007) Podocyte biology in diabetic nephropathy. Kidney Int. https://doi.org/10.1038/sj.ki.5002384

    Article  PubMed  Google Scholar 

  15. Xu J, Deng Y, Wang Y, Sun X, Chen S, Fu G (2020) SPAG5-AS1 inhibited autophagy and aggravated apoptosis of podocytes via SPAG5/AKT/mTOR pathway. Cell Prolif 53:e12738. https://doi.org/10.1111/cpr.12738

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang Q, Li R, Xiao Z, Hou C (2020) Lycopene attenuates high glucose-mediated apoptosis in MPC5 podocytes by promoting autophagy via the PI3K/AKT signaling pathway. Exp Ther Med 20:2870–2878. https://doi.org/10.3892/etm.2020.8999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fu LL, Cheng Y, Liu B (2013) Beclin-1: autophagic regulator and therapeutic target in cancer. Int J Biochem Cell Biol 45:921–924. https://doi.org/10.1016/j.biocel.2013.02.007

    Article  CAS  PubMed  Google Scholar 

  18. Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N (2013) Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta 1833:3448–3459. https://doi.org/10.1016/j.bbamcr.2013.06.001

    Article  CAS  PubMed  Google Scholar 

  19. Wu S, He Y, Qiu X, Yang W, Liu W, Li X, Li Y, Shen HM, Wang R, Yue Z, Zhao Y (2018) Targeting the potent beclin 1-UVRAG coiled-coil interaction with designed peptides enhances autophagy and endolysosomal trafficking. Proc Natl Acad Sci U S A 115:E5669-e5678. https://doi.org/10.1073/pnas.1721173115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang W, Choi W, Hu W, Mi N, Guo Q, Ma M, Liu M, Tian Y, Lu P, Wang FL, Deng H, Liu L, Gao N, Yu L, Shi Y (2012) Crystal structure and biochemical analyses reveal beclin 1 as a novel membrane binding protein. Cell Res 22:473–489. https://doi.org/10.1038/cr.2012.24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dikic I, Elazar Z (2018) Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 19:349–364. https://doi.org/10.1038/s41580-018-0003-4

    Article  CAS  PubMed  Google Scholar 

  22. Liu T, Tang Q, Liu K, Xie W, Liu X, Wang H, Wang RF, Cui J (2016) TRIM11 suppresses AIM2 inflammasome by degrading AIM2 via p62-dependent selective autophagy. Cell Rep 16:1988–2002. https://doi.org/10.1016/j.celrep.2016.07.019

    Article  CAS  PubMed  Google Scholar 

  23. Saitoh Y, Fujikake N, Okamoto Y, Popiel HA, Hatanaka Y, Ueyama M, Suzuki M, Gaumer S, Murata M, Wada K, Nagai Y (2015) p62 plays a protective role in the autophagic degradation of polyglutamine protein oligomers in polyglutamine disease model flies. J Biol Chem 290:1442–1453. https://doi.org/10.1074/jbc.M114.590281

    Article  CAS  PubMed  Google Scholar 

  24. Livingston MJ, Ding HF, Huang S, Hill JA, Yin XM, Dong Z (2016) Persistent activation of autophagy in kidney tubular cells promotes renal interstitial fibrosis during unilateral ureteral obstruction. Autophagy 12:976–998. https://doi.org/10.1080/15548627.2016.1166317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hazari Y, Bravo-San Pedro JM, Hetz C, Galluzzi L, Kroemer G (2020) Autophagy in hepatic adaptation to stress. J Hepatol 72:183–196. https://doi.org/10.1016/j.jhep.2019.08.026

    Article  CAS  PubMed  Google Scholar 

  26. Guo H, Wang B, Li H, Ling L, Niu J, Gu Y (2018) Glucagon-like peptide-1 analog prevents obesity-related glomerulopathy by inhibiting excessive autophagy in podocytes. Am J Physiol Renal Physiol 314:F181-f189. https://doi.org/10.1152/ajprenal.00302.2017

    Article  CAS  PubMed  Google Scholar 

  27. Wang W, Cai J, Tang S, Zhang Y, Gao X, Xie L, Mou Z, Wu Y, Wang L, Zhang J (2016) Sinomenine attenuates angiotensin II-induced autophagy via inhibition of P47-phox translocation to the membrane and influences reactive oxygen species generation in podocytes. Kidney Blood Press Res 41:158–167. https://doi.org/10.1159/000443417

    Article  CAS  PubMed  Google Scholar 

  28. He C, Liu G, Zhuang S, Zhang J, Chen Y, Li H, Huang Z, Zheng Y (2020) Yu Nu compound regulates autophagy and apoptosis through mTOR in vivo and vitro. Diabetes Metab Syndr Obes 13:2081–2092. https://doi.org/10.2147/dmso.S253494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kang YL, Saleem MA, Chan KW, Yung BY, Law HK (2014) The cytoprotective role of autophagy in puromycin aminonucleoside treated human podocytes. Biochem Biophys Res Commun 443:628–634. https://doi.org/10.1016/j.bbrc.2013.12.015

    Article  CAS  PubMed  Google Scholar 

  30. Su Y, Yao S, Zhao S, Li J, Li H (2020) LncRNA CCAT1 functions as apoptosis inhibitor in podocytes via autophagy inhibition. J Cell Biochem 121:621–631. https://doi.org/10.1002/jcb.29307

    Article  CAS  PubMed  Google Scholar 

  31. Lioudaki E, Stylianou KG, Petrakis I, Kokologiannakis G, Passam A, Mikhailidis DP, Daphnis EK, Ganotakis ES (2015) Increased urinary excretion of podocyte markers in normoalbuminuric patients with diabetes. Nephron 131:34–42. https://doi.org/10.1159/000438493

    Article  CAS  PubMed  Google Scholar 

  32. Regoli M, Bendayan M (1997) Alterations in the expression of the alpha 3 beta 1 integrin in certain membrane domains of the glomerular epithelial cells (podocytes) in diabetes mellitus. Diabetologia 40:15–22. https://doi.org/10.1007/s001250050637

    Article  CAS  PubMed  Google Scholar 

  33. Chen HC, Chen CA, Guh JY, Chang JM, Shin SJ, Lai YH (2000) Altering expression of alpha3beta1 integrin on podocytes of human and rats with diabetes. Life Sci 67:2345–2353. https://doi.org/10.1016/s0024-3205(00)00815-8

    Article  CAS  PubMed  Google Scholar 

  34. Chen CA, Tsai JC, Su PW, Lai YH, Chen HC (2006) Signaling and regulatory mechanisms of integrinalpha3beta1 on the apoptosis of cultured rat podocytes. J Lab Clin Med 147:274–280. https://doi.org/10.1016/j.lab.2005.12.010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Natural Science Fund Youth Project of China (No. 81600684 and No. 81603476), as well as the Youth Fund Project of the Shangdong Natural Science Foundation (ZR2016HQ16). We thank Professor Ying Yang from the Shanghai Key Laboratory of Diabetes for scientific advice.

Author information

Authors and Affiliations

Authors

Contributions

All authors took responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussion. BS designed the study. JX, YD, and PW analyzed the results, and YK, YZ and QY wrote and edited the manuscript. BS and CL reviewed and edited the manuscript. JX, YD and WP reviewed and revised the manuscript.

Corresponding author

Correspondence to Bimin Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

The experimental protocol was approved by the Ethics Committee for Animal Experimentation of The Affiliated Hospital of Qingdao University.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Deng, Y., Ke, Y. et al. Mutation of Beclin1 acetylation site at K414 alleviates high glucose-induced podocyte impairment in the early stage of diabetic nephropathy by inhibiting hyperactivated autophagy. Mol Biol Rep 49, 3919–3926 (2022). https://doi.org/10.1007/s11033-022-07242-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07242-2

Keywords

Navigation