Skip to main content

Advertisement

Log in

Iris recognition with tunable filter bank based feature

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, a tunable filter bank is proposed to extract region based features from non-cooperative iris images. The proposed method is based on half band polynomial of 14th order. The existing iris recognition algorithms work well with highly good quality images acquired under constraint and cooperative environments. These well-known techniques fail to perform well, when the raw images encounter segmentation failure during preprocessing. Their accuracy falls drastically, especially when the iris images are highly occluded due to different artifacts. Apart from that, segmentation failure during iris normalization makes the feature extraction more difficult. In our work, a tunable biorthogonal filter bank is proposed, for which the filter co-efficients are extracted from polynomial domain instead of z-domain. The proposed filter bank provides an opportunity to tuning and optimize the filter co-efficients. Experimental results using publicly available databases like CASIAv3, UBIRISv1, and IITD show the superiority of the proposed feature over the existing ones given its low template size, low feature extraction and feature matching time. Though accuracy yielded by the proposed filter bank is of the same order as found with existing features, achieving similar accuracy as state-of-the-art methods with less time and computation is a substantial development due to real-time usage of biometric systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ahamed A, Bhuiyan MIH (2012) Low complexity iris recognition using curvelet transform International conference on informatics, electronics vision. doi:10.1109/ICIEV.2012.6317442, pp 548–553

    Google Scholar 

  2. Alvarez-Betancourt Y, Garcia-Silvente M (2016) A keypoints-based feature extraction method for iris recognition under variable image quality conditions. Knowl-Based Syst 92:169–182. doi:10.1016/j.knosys.2015.10.024

    Article  Google Scholar 

  3. Ansari R, Kim CW, Dedovic M (1999) Structure and design of two-channel filter banks derived from a triplet of halfband filters. IEEE Trans Circuits Syst II, Analog Digit Signal Process 46(12):1487–1496. doi:10.1109/82.809534

    Article  Google Scholar 

  4. Baek S-J, Choi K-A, Ma C, Kim Y-H, Ko S-J (2013) Eyeball model-based iris center localization for visible image-based eye-gaze tracking systems. IEEE Trans Consum Electron 59(2):415–421. doi:10.1109/TCE.2013.6531125

    Article  Google Scholar 

  5. Bakshi S, Mehrotra H, Majhi B (2011) Real-time iris segmentation based on image morphology Proceedings of the international conference on communication, computing & security. doi:10.1145/1947940.1948010, pp 335–338

    Google Scholar 

  6. Bakshi S, Sa PK, Majhi B (2015) A novel phase-intensive local pattern for periocular recognition under visible spectrum. Biocybernetics and Biomedical Engineering 35(1):30–44. doi:10.1016/j.bbe.2014.05.003

    Article  Google Scholar 

  7. Baradarani A, Jonathan Wu QM, Ahmadi M, Mendapara P (2012) Tunable halfband-pair wavelet filter banks and application to multifocus image fusion. Pattern Recogn 45(2):657–671. doi:10.1016/j.patcog.2011.06.013

    Article  MATH  Google Scholar 

  8. Barpanda SS, Majhi B, Sa PK (2015) Region-based feature extraction from non-cooperative iris images using CDF 9/7 filter bank. Innov Syst Softw Eng 11 (3):197–202. doi:10.1007/s11334-015-0251-9

    Article  Google Scholar 

  9. Belcher C, Du Y (2009) Region-based SIFT approach to iris recognition. Opt Lasers Eng 47(1):139–147. doi:10.1016/j.optlaseng.2008.07.004

    Article  Google Scholar 

  10. Boles WW, Boashash B (1998) A human identification technique using images of the iris and wavelet transform. IEEE Trans Signal Process 46(4):1185–1188. doi:10.1109/78.668573

    Article  Google Scholar 

  11. Bonney B, Ives R, Etter D, Yingzi D (2004) Iris pattern extraction using bit planes and standard deviations Conference record of the thirty-eighth asilomar conference on signals, systems and computers, 1. doi:10.1109/ACSSC.2004.1399200

    Google Scholar 

  12. Bowyer KW, Hollingsworth K, Flynn PJ (2008) Image understanding for iris biometrics A survey. Comput Vis Image Underst 110(2):281–307. doi:10.1016/j.cviu.2007.08.005

    Article  Google Scholar 

  13. Camus TA, Wildes R (2002) Reliable and fast eye finding in close-up images 16th international conference on pattern recognition. doi:10.1109/ICPR.2002.1044732, vol 1, pp 389–394

  14. Chan SC, Yeung KS (2004) On the design and multiplierless realization of perfect reconstruction triplet-based FIR filter banks and wavelet bases. IEEE Trans Circuits Syst I, Reg Papers 51(8):1476–1491. doi:10.1109/TCSI.2004.832795

    Article  Google Scholar 

  15. Chen R, Lin XR, Ding TH (2011) Iris segmentation for non-cooperative recognition systems. IET Image Processing 5(5):448–456. doi:10.1049/iet-ipr.20090234

    Article  Google Scholar 

  16. CASIA Database Available: http://www.cbsr.ia.ac.cn/english/irisdatabase.asp

  17. Daugman J (2003) The importance of being random: statistical principles of iris recognition. Pattern Recogn 36(2):279–291. doi:10.1016/S0031-3203(02)00030-4

    Article  Google Scholar 

  18. Daugman JG (1993) High confidence visual recognition of persons by a test of statistical independence. IEEE Trans Pattern Anal Mach Intell 15(11):1148–1161. doi:10.1109/34.244676

    Article  Google Scholar 

  19. Daugman JG (2004) How iris recognition works. IEEE Trans Circuits Syst Video Technol 14(1):21–30. doi:10.1109/TCSVT.2003.818350

    Article  Google Scholar 

  20. Dobes M, Martinek J, Skoupil D, Dobesova Z, Pospisil J (2006) Human eye localization using the modified Hough transform. Optik - Int J Light Elect Opt 117 (10):468–473. doi:10.1016/j.ijleo.2005.11.008

    Article  Google Scholar 

  21. Dong W, Sun Z, Tan T (2011) Iris matching based on personalized weight map. IEEE Trans Pattern Anal Mach Intell 33(9):1744–1757. doi:10.1109/TPAMI.2010.227

    Article  Google Scholar 

  22. Du Y, Belcher C, Zhou Z (2010) Scale invariant Gabor descriptor-based noncooperative iris recognition. EURASIP Journal on Advances in Signal Processing 2010(1). doi:10.1155/2010/936512

  23. Eslami R, Radha H (2010) Design of regular wavelets using a three-step lifting scheme. IEEE Trans Signal Process 58(4):2088–2101. doi:10.1109/TSP.2009.2039822

    Article  MathSciNet  Google Scholar 

  24. Feng X, Fang C, Ding X, Wu Y (2006) Iris localization with dual coarse-to-fine strategy 18th international conference on pattern recognition. doi:10.1109/ICPR.2006.725, pp 553–556

    Google Scholar 

  25. Friedman MD, Casaverde P, Yansen D, McNerney T, Tosa Y, Usher D, Accomando NA, Muller D, Heacock G, Marshall J (2011) Multimodal ocular biometric system. Patent Number: US8014571 B2

  26. Han YL, Min TH, Park R-H (2015) Efficient iris localisation using a guided filter. IET Image Processing 9(5):405–412. doi:10.1049/iet-ipr.2014.0496

    Article  Google Scholar 

  27. Huang Y-P, Luo S-W, Chen E-Y (2002) An efficient iris recognition system International conference on machine learning and cybernetics. doi:10.1109/ICMLC.2002.1176794, pp 450–454

    Chapter  Google Scholar 

  28. IITD Database Available: http://www4.comp.polyu.edu.hk/csajaykr/IITD/database_iris.htm

  29. Inkumsah KK, Rodriguez AX, Woods E (2014) Ocular biometric authentication with system verification. Patent Number: US20140050371 A1

  30. Koh J, Govindaraju V, Chaudhary V (2010) A robust iris localization method using an active contour model and hough transform 2010 20th international conference on pattern recognition (ICPR). doi:10.1109/ICPR.2010.699, pp 2852–2856

    Chapter  Google Scholar 

  31. Krichen E, Garcia-Salicetti S, Dorizzi B (2009) A new phase-correlation-based iris matching for degraded images. IEEE Trans Syst Man Cybern B Cybern 39(4):924–934. doi:10.1109/TSMCB.2008.2009770 10.1109/TSMCB.2008.2009770

    Article  Google Scholar 

  32. Kumar A, Passi A (2010) Comparison and combination of iris matchers for reliable personal authentication. Pattern Recogn 43(3):1016–1026. doi:10.1016/j.patcog.2009.08.016

    Article  MATH  Google Scholar 

  33. Lance GN, Williams WT (1966) Computer programs for hierarchical polythetic classification (similarity analysis). Comput J 9(1):60–64. doi:10.1093/comjnl/9.1.60

    Article  MATH  Google Scholar 

  34. Lee PS, Ewe HT (2004) Individual recognition based on human iris using fractal dimension approach International conference on biometric authentication, Lecture notes in computer science, Springer, vol 3072, pp 467–474, DOI 10.1007/978-3-540-25948-0_64

  35. Lim S, Lee K, Byeon O, Kim T (2001) Efficient iris recognition through improvement of feature vector and classifier. ETRI J 23(2):61–70. doi:10.4218/etrij.01.0101.0203

    Article  Google Scholar 

  36. Liu X, Bowyer KW, Flynn PJ (2005) Experiments with an improved iris segmentation algorithm Fourth IEEE workshop on automatic identification advanced technologies. doi:10.1109/AUTOID.2005.21, pp 118–123

    Google Scholar 

  37. Liu Y, Yuan S, Zhu X, Cui Q (2003) A practical iris acquisition system and a fast edges locating algorithm in iris recognition 20th IEEE conference on instrumentation and measurement technology. doi:10.1109/IMTC.2003.1208145, pp 166–168

    Google Scholar 

  38. Lu C, Lu Z (2008) Local feature extraction for iris recognition with automatic scale selection. Image Vis Comput 26(7):935–940. doi:10.1016/j.imavis.2007.10.011

    Article  Google Scholar 

  39. Ma L, Tan T, Wang Y, Zhang D (2003) Personal identification based on iris texture analysis. IEEE Trans Pattern Anal Mach Intell 25(12):1519–1533. doi:10.1109/TPAMI.2003.1251145

    Article  Google Scholar 

  40. Ma L, Tan T, Wang Y, Zhang D (2004) Efficient iris recognition by characterizing key local variations. IEEE Trans Image Process 13(6):739–750. doi:10.1109/TIP.2004.827237

    Article  Google Scholar 

  41. Ma L, Wang Y, Tan T (2002) Iris recognition based on multichannel Gabor filtering Asian conference on computer vision, pp 279–283

    Google Scholar 

  42. Ma L, Wang Y, Tan T (2002) Iris recognition using circular symmetric filters International conference on pattern recognition. doi:10.1109/ICPR.2002.1048327, vol 2, pp 414–417

  43. Marsico MD, Petrosino A, Ricciardi S Iris recognition through machine learning techniques: a survey. Pattern Recogn Lett. doi:10.1016/j.patrec.2016.02.001

  44. Mehrotra H, Badrinath GS, Majhi B, Gupta P (2009) An efficient dual stage approach for iris feature extraction using interest point pairing IEEE workshop on computational intelligence in biometrics: theory, algorithms, and applications. doi:10.1109/CIB.2009.4925687, pp 59–62

    Google Scholar 

  45. Mehrotra H, Badrinath GS, Majhi B, Gupta P (2009) An efficient iris recognition using local feature descriptor IEEE international conference on image processing. doi:10.1109/ICIP.2009.5413465, pp 1957–1960

    Google Scholar 

  46. Mehrotra H, Majhi B, Gupta P (2010) Robust iris indexing scheme using geometric hashing of SIFT keypoints. J Netw Comput Appl 33(3):300–313. doi:10.1016/j.jnca.2009.12.005

    Article  Google Scholar 

  47. Mehrotra H, Majhi B, Sa PK (2011) Unconstrained iris recognition using F-SIFT 8th international conference on information, communications and signal processing (ICICS). doi:10.1109/ICICS.2011.6173607. IEEE, pp 1–5

  48. Miyazawa K, Ito K, Aoki T, Kobayashi K, Nakajima H (2008) An effective approach for iris recognition using phase-based image matching. IEEE Trans Pattern Anal Mach Intell 30(10):1741–1756. doi:10.1109/TPAMI.200770833

    Article  Google Scholar 

  49. Monro DM, Rakshit S, Zhang D (2007) DCT-based iris recognition. IEEE Trans Pattern Anal Mach Intell 29(4):586–595. doi:10.1109/TPAMI.2007.1002

    Article  Google Scholar 

  50. Monro DM, Zhang D (2005) An effective human iris code with low complexity International conference on image processing (ICIP). doi:10.1109/ICIP.2005.1530382, vol 3, pp 277–280

  51. Nabti M, Bouridane A (2008) An effective and fast iris recognition system based on a combined multiscale feature extraction technique. Pattern Recognit 41(3):868–879. doi:10.1016/j.patcog.2007.06.030

    Article  MATH  Google Scholar 

  52. Naseem I, Aleem A, Togneri R, Bennamoun M (2016) Iris recognition using class-specific dictionaries. Comput Electr Eng. doi:10.1016/j.compeleceng.2015.12.017

  53. Patil BD, Patwardhan PG, Gadre VM (2008) On the design of FIR wavelet filter banks using factorization of a halfband polynomial. IEEE Signal Process Lett 15:485–488. doi:10.1109/LSP.2008.922295

    Article  Google Scholar 

  54. Phillips PJ, Scruggs WT, O’Toole AJ, Flynn PJ, Bowyer KW, Schott CL, Sharpe M (2010) FRVT 2006 and ICE 2006 large-scale experimental results. IEEE Trans Pattern Anal Mach Intell 32(5):831 –846

    Article  Google Scholar 

  55. Phoong S-M, Kim CW, Vaidyanathan PP, Ansari R (1995) A new class of two-channel biorthogonal filter banks and wavelet bases. IEEE Trans Signal Process 43(3):649–665. doi:10.1109/78.370620 10.1109/78.370620

    Article  Google Scholar 

  56. Proenca H, Alexandre LA (2005) UBIRIS: a noisy iris image database. Springer, pp 970–977. doi:10.1007/11553595_119

  57. Proenca H, Alexandre LA (2006) Iris segmentation methodology for non-cooperative recognition. IEE Proceedings on Vision, Image and Signal Processing 153(2):199–205. doi:10.1049/ip-vis:20050213

    Article  Google Scholar 

  58. Proenca H, Alexandre LA (2007) Toward non-cooperative iris recognition: A classification approach using multiple signatures. IEEE Trans Pattern Anal Mach Intell 29(4):607–612. doi:10.1109/TPAMI.2007.1016 10.1109/TPAMI.2007.1016

    Article  Google Scholar 

  59. Proenca H, Filipe S, Santos R, Oliveira J, Alexandre LA (2010) The UBIRIS.v2: a database of visible wavelength iris images captured on-the-move and at-a-distance. IEEE Trans Pattern Anal Mach Intell 32(8):1529–1535. doi:10.1109/TPAMI.2009.66

    Article  Google Scholar 

  60. Pundlik SJ, Woodard DL, Birchfield ST (2008) Non-ideal iris segmentation using graph cuts IEEE computer society conference on computer vision and pattern recognition workshops. doi:10.1109/CVPRW.2008.4563108, pp 1–6

    Google Scholar 

  61. Rahulkar AD, Holambe RS (2012) Half-iris feature extraction and recognition using a new class of biorthogonal triplet half-band filter bank and flexible k-out-of-n:a post-classifier. IEEE Trans Inf Forensics Secur 7(1):230–240. doi:10.1109/TIFS.2011.2166069

    Article  Google Scholar 

  62. Rahulkar AD, Patil BD, Holambe RS (2012) A new approach to the design of biorthogonal triplet half-band filter banks using generalized half-band polynomials. Signal, Image, and Video Processing 8(8):1451–1457. doi:10.1007/s11760-012-0378-1

    Article  Google Scholar 

  63. Rahulkar AD, Waghmare LM, Holambe RS (2013) A new approach to the design of hybrid finer directional wavelet filter bank for iris feature extraction and classification using k-out-of-n: a post-classifier. Pattern Anal Applic 17(3):529–547. doi:10.1007/s10044-013-0334-x

    Article  MathSciNet  Google Scholar 

  64. Sanchez-Avila C, Sanchez-Reillo R (2005) Two different approaches for iris recognition using gabor filters and multiscale zero-crossing representation. Pattern Recog 38(2):231–240. doi:10.1016/j.patcog.2004.07.004

    Article  Google Scholar 

  65. Sanchez-Avila C, Sanchez-Reillo R, De Martin-Roche D (2002) Iris-based biometric recognition using dyadic wavelet transform. IEEE Aerosp Electron Syst Mag 17(10):3–6. doi:10.1109/MAES.2002.1044509 10.1109/MAES.2002.1044509

    Article  Google Scholar 

  66. Sun S, Yang S, Zhao L (2013) Noncooperative bovine iris recognition via SIFT. Neurocomputing 120:310–317. doi:10.1016/j.neucom.2012.08.068

    Article  Google Scholar 

  67. Sun Z, Tan T (2009) Ordinal measures for iris recognition. IEEE Trans Pattern Anal Mach Intell 31(12):2211–2226. doi:10.1109/TPAMI.2008.240

  68. Sundaram RM, Dhara BC, Chanda B (2011) A fast method for iris localization Second international conference on emerging applications of information technology (EAIT). doi:10.1109/EAIT.2011.18, pp 89–92

    Google Scholar 

  69. Sung H, Lim J, Park J, Lee Y (2004) Iris recognition using collarette boundary localization 17th international conference on pattern recognition, vol 4, pp 857–860, DOI doi:10.1109/ICPR.2004.1333907

  70. Tay DBH (1998) Design of filter banks using transformation of variables: new results. IEEE Trans Signal Process 46(1):203–209. doi:10.1109/78.651217

    Article  Google Scholar 

  71. Tay DBH (2002) Two-stage, least squares design of biorthogonal filter banks. IEE Proceedings: Vision, Image and Signal Processing 149(6):341–346. doi:10.1049/ip-vis:20020654

    Google Scholar 

  72. Tay DBH, Kingsbury NG (1993) Flexible design of multidimensional perfect reconstruction FIR 2-band filters using transformations of variables. IEEE Trans Image Process 2(4):466–480. doi:10.1109/83.242356

    Article  Google Scholar 

  73. Tay DBH, Palaniswami M (2004) A novel approach to the design of the class of triplet halfband filterbanks. IEEE Trans Circuits Syst Express Briefs 51(7):378–383. doi:10.1109/TCSII.2004.831430

    Article  Google Scholar 

  74. UBIRIS Database Available: http://iris.di.ubi.pt/index_arquivos/page374.html

  75. Umer S, Dhara BC, Chanda B (2016) Texture code matrix-based multi-instance iris recognition. Pattern Anal Applic 19:283–295. doi:10.1007/s10044-015-0482-2

    Article  MathSciNet  Google Scholar 

  76. Vaidyanathan PP (2003) Multirate systems and filter banks. Pearson Education Taiwan. ISBN: 9789867727886

  77. Vatsa M, Singh R, Noore A (2008) Improving iris recognition performance using segmentation, quality enhancement, match score fusion, and indexing. IEEE IEEE Trans Syst Man Cybern B Cybern 38(4):1021–1035. doi:10.1109/TSMCB.2008.922059

    Article  Google Scholar 

  78. Velisavljevic V (2009) Low-complexity iris coding and recognition based on directionlets. IEEE Trans Inf Forensic Secur 4(3):410–417. doi:10.1109/TIFS.2009.2024025

    Article  Google Scholar 

  79. Vetterli M (1987) A theory of multirate filter banks. IEEE Trans Acoust Speech Signal Process 35(3):356–372. doi:10.1109/TASSP.1987.1165137

    Article  Google Scholar 

  80. Wildes R (1997) Iris recognition: an emerging biometric technology. Proc IEEE 85(9):1348–1363. doi:10.1109/5.628669

    Article  Google Scholar 

  81. Zhang M, Sun Z, Tan T (2011) Deformable DAISY matcher for robust iris recognition IEEE international conference on image processing. doi:10.1109/ICIP.2011.6116346, pp 3189–3192

    Google Scholar 

  82. Zhang M, Sun Z, Tan T (2012) Perturbation-enhanced feature correlation filter for robust iris recognition. IET Biometrics 1(1):37–45. doi:10.1049/iet-bmt.2012.0002

    Article  Google Scholar 

Download references

Acknowledgment

The research presented in this article is funded by the following grants:

1. Grant no. 12(5)/2012-ESD by Department of Electronics and Information Technology, Government of India.

2. Grant no. ETI/359/2014 by Department of Science and Technology, Government of India under the Fund for Improvement of S&T Infrastructure in Universities and Higher Educational Institutions (FIST) Program 2016.

The research presented in this article is an extension to the work presented in the following article: Barpanda SS, Majhi B, Sa PK (2015) Region-based feature extraction from non-cooperative iris images using CDF 9/7 filter bank. Innov Syst Softw Eng 11(3):197–202. doi:10.1007/s11334-015-0251-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sambit Bakshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barpanda, S.S., Sa, P.K., Marques, O. et al. Iris recognition with tunable filter bank based feature. Multimed Tools Appl 77, 7637–7674 (2018). https://doi.org/10.1007/s11042-017-4668-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4668-z

Keywords

Navigation