Skip to main content
Log in

Improved pedestrian detection using motion segmentation and silhouette orientation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Pedestrians are the most interesting as well as vulnerable entity from both safety and security perspective in the field of video surveillance. In this article, we present a framework to detect pedestrians across a stationary camera view. Our propositions thrust upon developing a motion segmentation module and a feature extraction module for human localization. In the first stage, a background subtraction method is proposed to collect the initial set of moving objects in the processed frame. A shape descriptor is then presented to encode the pattern of human body in terms of silhouette orientation histogram. Moreover, the principle of Golden ratio is employed to formulate a part-based detector to alleviate the problem with occlusion. Both the above modules are first validated separately, and then as a unified unit, using various statistical measures. The proposed background subtraction module is simulated on twenty video clips taken from three benchmark datasets. The efficacy of our shape descriptor is validated on various image-windows taken from three publicly available datasets. The unified framework including both the modules are tested on two standard surveillance datasets. All the experimental results are uploaded at: https://sites.google.com/site/PedestriansInMotion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Bar-Hillel A, Levi D, Krupka E, Goldberg C (2010) Part-based feature synthesis for human detection. In: European conference on computer vision, Springer

  2. Barnich O, Van Droogenbroeck M (2011) ViBe: a universal background subtraction algorithm for video sequences. IEEE Trans Image Process 20(6):1709–1724

    Article  MathSciNet  MATH  Google Scholar 

  3. Benenson R, Omran M, Hosang J, Schiele B (2014) Ten years of pedestrian detection, what have we learned? In: European conference on computer vision. Springer, pp 613–627

  4. Brown LM, Feris R, Pankanti S (2014) Temporal non-maximum suppression for pedestrian detection using self-calibration. In: International conference on pattern recognition. IEEE, pp 2239– 2244

  5. Caviar: Context aware vision using image-based active recognition. http://homepages.inf.ed.ac.uk/rbf/CAVIAR/

  6. Cho H, Rybski PE, Bar-Hillel A, Zhang W (2012) Real-time pedestrian detection with deformable part models. In: Intelligent vehicles symposium (IV). IEEE, pp 1035–1042

  7. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: IEEE Computer society conference on computer vision and pattern recognition, vol. 1. IEEE, pp 886–893

  8. Dollár P, Belongie SJ, Perona P (2010) The fastest pedestrian detector in the west. In: BMVC, vol. 2. Citeseer, p 7

  9. Dollár P, Tu Z, Perona P, Belongie S (2009) Integral channel features

  10. Dollar P, Wojek C, Schiele B, Perona P (2012) Pedestrian detection: an evaluation of the state of the art. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(4):743–761

    Article  Google Scholar 

  11. Enzweiler M, Gavrila DM (2009) Monocular pedestrian detection: Survey and experiments. IEEE Transactions on Pattern Analysis and Machine Intelligence 31 (12):2179–2195

    Article  Google Scholar 

  12. Errami M, Rziza M (2016) Improving pedestrian detection using support vector regression. In: 13Th international conference on computer graphics, imaging and visualization. IEEE, pp 156–160

  13. Everingham M, Van Gool L, Williams CK, Winn J, Zisserman A (2010) The pascal visual object classes (voc) challenge. Int J Comput Vis 88(2):303–338

    Article  Google Scholar 

  14. Felzenszwalb P, McAllester D, Ramanan D (2008) A discriminatively trained, multiscale, deformable part model. In: IEEE Conference on computer vision and pattern recognition. IEEE, pp 1–8

  15. Felzenszwalb PF, Girshick RB, McAllester D, Ramanan D (2010) Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(9):1627–1645

    Article  Google Scholar 

  16. Fernandez-Sanchez EJ, Diaz J, Ros E (2013) Background subtraction based on color and depth using active sensors. Sensors 13(7):8895–8915

    Article  Google Scholar 

  17. Finlayson GD, Hordley SD, Xu R (2005) Convex programming colour constancy with a diagonal-offset model. In: IEEE International conference on image processing, vol. 3. IEEE, pp III–948

  18. Gerónimo D., Sappa A, López A., Ponsa D (2007) Adaptive image sampling and windows classification for on-board pedestrian detection. In: International conference on computer vision systems, vol. 39. Bielefeld, Germany

  19. Gevers T, Smeulders A (1999) Color-based object recognition. Pattern Recogn 32(3):453–464

    Article  Google Scholar 

  20. Goyette N, Jodoin PM, Porikli F, Konrad J, Ishwar P (2012) Changedetection. net: a new change detection benchmark dataset. In: Computer vision and pattern recognition workshops. IEEE, pp 1–8

  21. Hati K, Sa P, Majhi B (2013) Intensity range based background subtraction for effective object detection. IEEE Signal Processing Letters 20(8):759–762

    Article  Google Scholar 

  22. Heikkila M, Pietikainen M (2006) A texture-based method for modeling the background and detecting moving objects. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(4):657–662

    Article  Google Scholar 

  23. Hubert M, Vandervieren E (2008) An adjusted boxplot for skewed distributions. Comput Stat Data Anal 52(12):5186–5201

    Article  MathSciNet  MATH  Google Scholar 

  24. Jeon H, Jeong J, Bang J, Hwang C (2008) The efficient features for tracking. In: 20Th IEEE international conference on tools with artificial intelligence, vol. 1. IEEE, pp 241–244

  25. Ji X, Liu H (2010) Advances in view-invariant human motion analysis: a review. IEEE Trans Syst Man Cybern Part C Appl Rev 40(1):13–24

    Google Scholar 

  26. Li L, Huang W, Gu I, Tian Q (2003) Foreground object detection from videos containing complex background. In: ACM International multimedia conference and exhibition. pp 2–10

  27. Li L, Wang P, Hu Q, Cai S (2016) Efficient background modeling based on sparse representation and outlier iterative removal. IEEE Transactions on Circuits and Systems for Video Technology 26(2):278–289

    Article  Google Scholar 

  28. Liang F, Wang D, Liu Y, Jiang Y, Tang S (2012) Fast pedestrian detection based on sliding window filtering. In: Pacific-rim conference on multimedia. Springer, pp 811–822

  29. Lin Z, Davis LS (2008) A pose-invariant descriptor for human detection and segmentation. In: European conference on computer vision. Springer, pp 423–436

  30. Maddalena L, Petrosino A (2008) A self-organizing approach to background subtraction for visual surveillance applications. IEEE Trans Image Process 17 (7):1168–1177

    Article  MathSciNet  Google Scholar 

  31. Maddalena L, Petrosino A (2010) A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection. Neural Comput & Applic 19(2):179–186

    Article  Google Scholar 

  32. Maji S, Berg AC, Malik J (2008) Classification using intersection kernel support vector machines is efficient. In: IEEE Conference on computer vision and pattern recognition. IEEE, pp 1–8

  33. McHugh JM, Konrad J, Saligrama V, Jodoin PM (2009) Foreground-adaptive background subtraction. IEEE Signal Processing Letters 16(5):390–393

    Article  Google Scholar 

  34. Munder S, Gavrila DM (2006) An experimental study on pedestrian classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(11):1863–1868

    Article  Google Scholar 

  35. Paul M, Haque SM, Chakraborty S (2013) Human detection in surveillance videos and its applications-a review. EURASIP Journal on Advances in Signal Processing 2013(1):176

    Article  Google Scholar 

  36. Piccardi M, Jan T (2004) Mean-shift background image modelling. In: International conference on image processing, vol. 5. IEEE, pp 3399–3402

  37. Prioletti A, Møgelmose A, Grisleri P, Trivedi MM, Broggi A, Moeslund TB (2013) Part-based pedestrian detection and feature-based tracking for driver assistance: real-time, robust algorithms, and evaluation. IEEE Trans Intell Transp Syst 14(3):1346–1359

    Article  Google Scholar 

  38. Ren J, Xu M, Smith JS, Cheng S (2016) Multi-view and multi-plane data fusion for effective pedestrian detection in intelligent visual surveillance. Multidim Syst Sign Process 27(4):1007–1029

    Article  MathSciNet  Google Scholar 

  39. Rodriguez P, Wohlberg B (2013) Fast principal component pursuit via alternating minimization. In: International conference on image processing. IEEE, pp 69–73

  40. Schwartz WR, Kembhavi A, Harwood D, Davis LS (2009) Human detection using partial least squares analysis. In: 12th international conference on computer vision. IEEE, pp 24–31

  41. Shaikh SH, Saeed K, Chaki N (2014) Moving object detection using background subtraction. In: Moving object detection using background subtraction. Springer, pp 15–23

  42. St-Charles PL, Bilodeau GA, Bergevin R (2014) Flexible background subtraction with self-balanced local sensitivity. In: IEEE Conference on computer vision and pattern recognition workshops. pp 408–413

  43. St-Charles PL, Bilodeau GA, Bergevin R (2015) A self-adjusting approach to change detection based on background word consensus. IN: IEEE Winter conference on applications of computer vision (WACV). IEEE, pp 990–997

  44. Stauffer C, Grimson WEL (1999) Adaptive background mixture models for real-time tracking. In: IEEE Computer society conference on computer vision and pattern recognition, vol. 2. IEEE

  45. Sulman N, Sanocki T, Goldgof D, Kasturi R (2008) How effective is human video surveillance performance? In: 19th international conference on pattern recognition. IEEE, pp 1–3

  46. Vacavant A, Chateau T, Wilhelm A, Lequièvre L (2012) A benchmark dataset for outdoor foreground/background extraction. In: Asian conference on computer vision. Springer, pp 291–300

  47. Van De Sande K, Gevers T, Snoek C (2010) Evaluating color descriptors for object and scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(9):1582–1596

    Article  Google Scholar 

  48. Vu HS, Guo JX, Chen KH, Hsieh SJ, Chen DS (2016) A real-time moving objects detection and classification approach for static cameras. In: IEEE international conference on consumer electronics-Taiwan. IEEE, pp 1–2

  49. Walk S, Majer N, Schindler K, Schiele B (2010) New features and insights for pedestrian detection. In: IEEE conference on computer vision and pattern recognition. IEEE, pp 1030–1037

  50. Wang M, Wang X (2011) Automatic adaptation of a generic pedestrian detector to a specific traffic scene. In: IEEE conference on computer vision and pattern recognition. IEEE, pp 3401–3408

  51. Wang X, Han TX, Yan S (2009) An hog-lbp human detector with partial occlusion handling. In: 12th international conference on computer vision. IEEE, pp 32–39

  52. Wang X, Ma X, Grimson WEL (2009) Unsupervised activity perception in crowded and complicated scenes using hierarchical bayesian models. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(3):539–555

    Article  Google Scholar 

  53. Wang Y, Jodoin PM, Porikli F, Konrad J, Benezeth Y, Ishwar P (2014) Cdnet 2014: an expanded change detection benchmark dataset. In: Computer vision and pattern recognition workshops. pp 387– 394

  54. Wang Y, Piérard S., Su SZ, Jodoin PM (2016) Improving pedestrian detection using motion-guided filtering. Pattern Recogn Lett (2016)

  55. Wei Y, Tian Q, Guo T (2013) An improved pedestrian detection algorithm integrating haar-like features and hog descriptors. Advances in Mechanical Engineering 5(546):206

    Google Scholar 

  56. Wojek C, Schiele B (2008) A performance evaluation of single and multi-feature people detection. In: Joint pattern recognition symposium. Springer, pp 82–91

  57. Wu M, Peng X (2010) Spatio-temporal context for codebook-based dynamic background subtraction. AEU Int J Electron Commun 64(8):739–747

    Article  Google Scholar 

  58. Xu J, Vázquez D, López AM, Marín J, Ponsa D (2014) Learning a part-based pedestrian detector in a virtual world. IEEE Trans Intell Transp Syst 15 (5):2121–2131

    Article  Google Scholar 

  59. Yao S, Pan S, Wang T, Zheng C, Shen W, Chong Y (2015) A new pedestrian detection method based on combined hog and lss features. Neurocomputing 151:1006–1014

    Article  Google Scholar 

  60. Zhou X, Yang C, Yu W (2013) Moving object detection by detecting contiguous outliers in the low-rank representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(3):597–610

    Article  Google Scholar 

  61. Zivkovic Z (2004) Improved adaptive Gaussian mixture model for background subtraction. In: International conference on pattern recognition, vol. 2. IEEE, pp 28–31

Download references

Acknowledgment

This work is supported by Grant Number SB/FTP/ETA-0059/2014 by Science and Engineering Research Board (SERB), Department of Science & Technology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sambit Bakshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhury, S.K., Sa, P.K., Prasad Padhy, R. et al. Improved pedestrian detection using motion segmentation and silhouette orientation. Multimed Tools Appl 77, 13075–13114 (2018). https://doi.org/10.1007/s11042-017-4933-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4933-1

Keywords

Navigation