Skip to main content
Log in

Fast periocular authentication in handheld devices with reduced phase intensive local pattern

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

To ensure highest security in handheld devices, biometric authentication has emerged as a reliable methodology. Deployment of mobile biometric authentication struggles due to computational complexity. For a fast response from a mobile biometric authentication method, it is desired that the feature extraction and matching should take least time. In this article, the periocular region captured through frontal camera of a mobile device is considered under investigation for its suitability to produce a reduced feature that takes least time for feature extraction and matching. A recently developed feature Phase Intensive Local Pattern (PILP) is subjected to reduction giving birth to a feature termed as Reduced PILP (R-PILP), which yields a matching time speed-up of 1.56 times while the vector is 20% reduced without much loss in authentication accuracy. The same is supported by experiment on four publicly available databases. The performance is also compared with one global feature: Phase Intensive Global Pattern, and three local features: Scale Invariant Feature Transform, Speeded-up Robust Features, and PILP. The amount of reduction can be varied with the requirement of the system. The amount of reduction and the performance of the system bears a trade-off. Proposed R-PILP attempts to make periocular suitable for mobile devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Adams J, Woodard DL, Dozier G, Miller PE, Bryant K, Glenn G (2010) Genetic - based type II feature extraction for periocular biometric recognition: less is more. In: 20th international conference on pattern recognition (ICPR), pp 205–208. doi:10.1109/ICPR.2010.59

    Google Scholar 

  2. Ahuja K, Islam R, Barbhuiya FA, Dey K (2017) Convolutional neural networks for ocular smartphone-based biometrics. Pattern Recogn Lett 91:17–26. doi:10.1016/j.patrec.2017.04.002

    Article  Google Scholar 

  3. Bakshi S, Sa PK, Majhi B (2014) Phase intensive global pattern for periocular recognition. In: Proceedings of the the 11th IEEE India conference (INDICON). doi:10.1109/INDICON.2014.7030362

  4. Bakshi S, Sa PK, Majhi B (2015) A novel phase-intensive local pattern for periocular recognition under visible spectrum. Biocybernetics Biomed Eng 35(1):30–44. doi:10.1016/j.bbe.2014.05.003

    Article  Google Scholar 

  5. BATH University database. http://www.bath.ac.uk/elec-eng/research/sipg/irisweb, last accessed on 4.4.2016

  6. Bay H, Ess A, Tuytelaars T, Gool LV (2008) Speeded-up robust features (SURF). Comput Vis Image Underst 110(3):346–359. doi:10.1016/j.cviu.2007.09.014

    Article  Google Scholar 

  7. CASIA Database. http://www.cbsr.ia.ac.cn/english/irisdatabase.asp, last accessed on 4.4.2016

  8. Hollingsworth KP, Bowyer KW, Flynn PJ (2010) Identifying useful features for recognition in near-infrared periocular images. In: 4th IEEE international conference on biometrics: Theory, Applications and Systems (BTAS). doi:10.1109/BTAS.2010.5634529

  9. Hollingsworth KP, Darnell SS, Miller PE, Woodard DL, Bowyer KW, Flynn PJ (2010) Human and machine performance on periocular biometrics under near-infrared light and visible light. IEEE Trans Inf Forensics Secur 7:588–601. doi:10.1109/TIFS.2011.2173932

    Article  Google Scholar 

  10. Jain AK, Flynn P, Ross A (2008) Handbook of biometrics. Springer. ISBN : 978-0-387-71040-2

  11. Juefei-Xu F, Cha M, Heyman J, Venugopalan S, Abiantun R, Savvides M (2010) Robust local binary pattern feature sets for periocular biometric identification. In: 4th IEEE international conference on biometrics: theory, applications, and systems (BTAS). doi:10.1109/BTAS.2010.5634504

  12. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110. doi:10.1023/B:VISI.0000029664.99615.94

    Article  Google Scholar 

  13. Lu C, Lu Z (2008) Local feature extraction for iris recognition with automatic scale selection. Image Vis Comput 26(7):935–940. doi:10.1016/j.imavis.2007.10.011

    Article  Google Scholar 

  14. Mahalingam G, Ricanek Jr K (2013) LBP-Based periocular recognition on challenging face datasets. EURASIP Journal on Image and Video Processing, 36. doi:10.1186/1687-5281-2013-36

  15. Miller PE, Lyle JR, Pundlik SJ, Woodard DL (2010) Performance evaluation of local appearance based periocular recognition. In: 4th IEEE international conference on biometrics: theory, applications and systems (BTAS). doi:10.1109/BTAS.2010.5634536

  16. Miller PE, Rawls AW, Pundlik SJ (2010) Personal identification using periocular skin texture. In: Proceedings of the 2010 ACM symposium on applied computing (SAC ’10), pp 1496–1500. doi:10.1145/1774088.1774408

    Chapter  Google Scholar 

  17. Oh K, Oh B-S, Toh K-A, Yau W-Y, Eng H-L (2014) Combining sclera and periocular features for multi-modal identity verification. Neurocomputing 128:185–198. doi:10.1016/j.neucom.2013.01.066

    Article  Google Scholar 

  18. Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classification based on featured distributions. IEEE Trans Inf Forensics Secur 29(1):51–59. doi:10.1016/0031-3203(95)00067-4

    Google Scholar 

  19. Padole CN, Proenca H (2012) Periocular recognition: analysis of performance degradation factors. In: 5Th IAPR international conference on biometrics (ICB), pp 439–445. doi:10.1109/ICB.2012.6199790

    Chapter  Google Scholar 

  20. Park U, Ross A, Jain AK (2009) Periocular biometrics in the visible spectrum: a feasibility study. In: IEEE 3rd international conference on biometrics: theory, applications and systems (BTAS). doi:10.1109/BTAS.2009.5339068

  21. Patel B, Maheshwari RP, Raman B (2017) Evaluation of periocular features for kinship verification in the wild. Comput Vis Image Underst. doi:10.1016/j.cviu.2017.04.009

  22. Phillips JP, Moon H, Rizvi SA, Rauss PJ (2000) The FERET evaluation methodology for face-recognition algorithms. IEEE Trans Pattern Anal Mach Intell 22 (10):1090–1104. doi:10.1109/34.879790

    Article  Google Scholar 

  23. Proenca H, Alexandre LA (2005) UBIRIS: a noisy iris image database. In: 13Th international conference on image analysis and processing (ICIAP 2005), pp 970–977. doi:10.1007/11553595_119

    Google Scholar 

  24. Proenca H, Alexandre LA (2007) Toward non-cooperative iris recognition: a classification approach using multiple signatures. IEEE Trans Pattern Anal Mach Intell 29(4):607–612. doi:10.1109/TPAMI.2007.1016

    Article  Google Scholar 

  25. Proenca H, Filipe S, Santos R, Oliveira J, Alexandre LA (2010) The UBIRIS.v2: a database of visible wavelength iris images captured on-the-move and at-a-distance. IEEE Trans Pattern Anal Mach Intell 32(8):1529–1535. doi:10.1109/TPAMI.2009.66

    Article  Google Scholar 

  26. Santos G, Grancho E, Bernardo MV, Fiadeiro PT (2014) Fusing iris and periocular information for cross-sensor recognition. Pattern Recogn Lett. doi:10.1016/j.patrec.2014.09.012

  27. Uzair M, Mahmood A, Mian A, McDonald C (2013) A compact discriminative representation for efficient image-set classification with application to biometric recognition. In: 6th IAPR international conference on biometrics (ICB). doi:10.1109/ICB.2013.6612959

  28. Vatsa M, Singh R, Noore A (2008) Improving iris recognition performance using segmentation, quality enhancement, match score fusion, and indexing. IEEE Trans Syst Man Cybern B Cybern 38(4):1021–1035. doi:10.1109/TSMCB.2008.922059

    Article  Google Scholar 

  29. Woodard DL, Pundlik SJ, Miller PE (2010) On the fusion of periocular and iris biometrics in non-ideal imagery. In: 20Th international conference on pattern recognition (ICPR), pp 201–204. doi:10.1109/ICPR.2010.58

    Google Scholar 

  30. Woodard DL, Pundlik SJ, Miller PE, Lyle JR (2011) Appearance - based periocular features in the context of face and non-ideal iris recognition. J Signal Image Video Process 5(4):443–455. doi:10.1007/s11760-011-0248-2

    Article  Google Scholar 

  31. Zhao Z, Kumar A (2017) Accurate periocular recognition under less constrained environment using semantics-assisted convolutional neural network. IEEE Trans Inf Forensics Secur 12(5):1017–1030. doi:10.1109/TIFS.2016.2636093

    Article  Google Scholar 

Download references

Acknowledgment

The research is funded by Grant no. 12(5)/2012-ESD by Department of Electronics and Information Technology, Government of India. This research is an extension to:

S. Bakshi, P.K. Sa, and B. Majhi. A Novel Phase-intensive Local Pattern for Periocular Recognition under Visible Spectrum. Biocybernetics and Biomedical Engineering 35(1):30–44, 2015. doi:10.1016/j.bbe.2014.05.003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sambit Bakshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakshi, S., Sa, P.K., Wang, H. et al. Fast periocular authentication in handheld devices with reduced phase intensive local pattern. Multimed Tools Appl 77, 17595–17623 (2018). https://doi.org/10.1007/s11042-017-4965-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4965-6

Keywords

Navigation