Skip to main content
Log in

Non-overlapped blockwise interpolated local binary pattern as periocular feature

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Most of the prominent features of human face are present in the ocular area, referred as the periocular region. Complex and dense features in these regions makes it a candidate to be used as a biometric trait. This paper discusses an effective method for periocular recognition using non-overlapped blockwise interpolated local binary pattern (iLBP) features. For a given periocular image, an iLBP coded feature image is obtained and further divided into four equal non-overlapping sub-regions. From each sub-region having iLBP pattern, eight bin histogram features are calculated. A single feature vector is formed by concatenating blocked histograms of each non-overlapping region. Binned histogram based feature is also extracted using Phase Intensive Global Pattern (PIGP) features for comparison of results. Experiments are conducted on UBIRIS.v1 and UBIPr.v2 datasets. From the experiments, it is observed that selected histogram feature bins through the proposed approach provide a more compact representation of periocular image and size of the feature vector is also reduced with significant improvement in performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

LBP:

Local Binary Pattern

iLBP:

Interpolated Local Binary Pattern

PIGP:

Phase Intensive Global Pattern

PILP:

Phase Intensive Local Pattern

R-PILP:

Reduced Phase Intensive Local Pattern

DLBP:

Dominant Local Binary Pattern

ULBP:

Uniform Local Binary Pattern

MB-LBP:

Multi-block Local Binary Pattern

uMLBP:

uniform Multiscale Local Binary Pattern

H-3P-LBP:

Hierarchical Three-patch Local Binary Pattern

DCT:

Discrete Cosine Transform

DFT:

Discrete Fourier Transform

DWT:

Discrete Wavelet Transform

WLBP:

Walsh-Hadamard Local Binary Pattern

CNN:

Convolution Neural Network

HOG:

Histogram of Oriented Gradient

GE:

Genetic & Evolutionary

GO:

Gradient Orientation

MLBP:

Multiresolution Local Binary Pattern

TERELM:

Total Error Rate Minimization

LoG:

Laplacian of Gaussian

ISV:

Inter-Session Variability

WLD:

Weber Local Descriptor

LPQ:

Local Phase Quantization

LTP:

Local Ternary Pattern

NILBP:

Intensity based Local Binary Pattern

LSP:

Local Salient Pattern

LDA:

Linear Discriminant Analysis

NIR:

Near Infrared Rays

VW:

Visible Wavelength

FAR:

False Acceptance Rate

FRR:

False Rejection Rate

ROC:

Receiver Operating Characteristic

EER:

Equal Error Rate

CISP:

Compact Image Set Representation

MDA:

Multiple Discriminant Analysis

References

  1. Adams J, Woodard D, Dozier G, Miller P, Bryant K, Glenn G (2010) Genetic - based type II feature extraction for periocular biometric recognition: Less is more. In: 20th International Conference on Pattern Recognition (ICPR). https://doi.org/10.1109/ICPR.2010.59, pp 205–208

  2. Aginako N, Castrillón-Santana M, Lorenzo-Navarro J, Martínez-otzeta JM, Sierra B (2017) Periocular and iris local descriptors for identity verification in mobile applications. Pattern Recogn Lett 91:52–59. https://doi.org/10.1016/j.patrec.2017.01.021

    Article  Google Scholar 

  3. Ahonen T., Hadid A., Pietikäinen M (2004) Face recognition with local binary patterns. In: European conference on computer vision. https://doi.org/10.1007/978-3-540-24670-1_36. Springer, pp 469–481

  4. Akhtar Z, Kumar G, Bakshi S, Proença H (2018) Experiments with ocular biometric datasets: a practitioner’s guideline. IT Professional 20(3):50–63. https://doi.org/10.1109/MITP.2018.032501748

    Article  Google Scholar 

  5. Al-Zubi R, Abu-Al-Nadi D (2007) Automated personal identification system based on human iris analysis. Pattern Anal Applic 10(2):147–164. https://doi.org/10.1007/s10044-006-0058-2

    Article  MathSciNet  Google Scholar 

  6. Ali Z, Park U, Nang J, Park J, Hong T, Park S (2017) Periocular recognition using uMLBP and attribute features. KSII Trans Internet Inform Syst 11:6133–6151. https://doi.org/10.3837/tiis.2017.12.024

    Google Scholar 

  7. Alonso-Fernandez F, Raja KB, Raghavendra R, Busch C, Bigun J, Vera-Rodriguez R, Fierrez J (2019) Cross-sensor periocular biometrics: A comparative benchmark including smartphone authentication. arXiv:https://arxiv.org/abs/1902.08123

  8. Bai Z, Hatzinakos D (2010) LBP-Based biometric hashing scheme for human authentication. In: 2010 11th international conference on control automation robotics & vision (ICARCV). https://doi.org/10.1109/ICARCV.2010.5707216, pp 1842–1847

  9. Bakshi S, Kumari S, Raman R, Sa P (2012) Evaluation of periocular over face biometric: a case study. In: Proceedings of International Conference on Modelling Optimization and Computing. https://doi.org/10.1016/j.proeng.2012.06.198, pp 1628–1633

  10. Bakshi S, Sa PK, Majhi B (2014) Phase intensive global pattern for periocular recognition. In: Annual IEEE India conference (INDICON). https://doi.org/10.1109/INDICON.2014.7030362, pp 1–5

  11. Bakshi S, Sa PK, Majhi B (2015) A novel phase-intensive local pattern for periocular recognition under visible spectrum. Biocybern Biomed Eng 35(1):30–44. https://doi.org/10.1016/j.bbe.2014.05.003

    Article  Google Scholar 

  12. Bakshi S, Sa PK, Wang H, Barpanda SS, Majhi B (2018) Fast periocular authentication in handheld devices with reduced phase intensive local pattern. Multimed Tool Appl 77(14):17,595–17:623. https://doi.org/10.1007/s11042-017-4965-6

    Article  Google Scholar 

  13. Bharadwaj S, Bhatt H, Vatsa M, Singh R (2010) Periocular biometrics: when iris recognition fails. In: 4th IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS). https://doi.org/10.1109/BTAS.2010.5634498

  14. Bordallo López M, Nieto A, Boutellier J, Hannuksela J, Silvén O (2017) Evaluation of real-time LBP computing in multiple architectures. J Real-Time Image Process 13(2):375–396. https://doi.org/10.1007/s11554-014-0410-5

    Article  Google Scholar 

  15. Castrillon-Santana M, Lorenzo-Navarro J, Ramón-Balmaseda E (2016) On using periocular biometric for gender classification in the wild. Pattern Recogn Lett 82 (2):181–189. https://doi.org/10.1016/j.patrec.2015.09.014

    Article  Google Scholar 

  16. Gragnaniello D, Sansone C, Verdoliva L (2015) Iris liveness detection for mobile devices based on local descriptors. Pattern Recogn Lett 57:81–87. https://doi.org/10.1016/j.patrec.2014.10.018

    Article  Google Scholar 

  17. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. https://doi.org/10.1109/CVPR.2016.90, pp 770–778

  18. Hernandez-Diaz K, Alonso-Fernandez F, Bigun J (2018) Periocular recognition using CNN features off-the-shelf. In: 2018 International conference of the biometrics special interest group (BIOSIG). https://doi.org/10.23919/BIOSIG.2018.8553348, pp 1–5

  19. Hollingsworth K, Bowyer K, Flynn P (2010) Identifying useful features for recognition in near-infrared periocular images. In: 4th IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS). https://doi.org/10.1109/BTAS.2010.5634529

  20. Hollingsworth K, Darnell S, Miller P, Woodard D, Bowyer K, Flynn P (2012) Human and machine performance on periocular biometrics under near-infrared light and visible light. IEEE Trans Inform Forensics Secur 7:588–601. https://doi.org/10.1109/TIFS.2011.2173932

    Article  Google Scholar 

  21. Ichino M, Yaguchi H (1994) Generalized Minkowski metrics for mixed feature-type data analysis. IEEE Trans Syst, Man, Cybern 24(4):698–708. https://doi.org/10.1109/21.286391

    Article  MathSciNet  MATH  Google Scholar 

  22. Jillela R, Ross A, Boddeti N, Kumar BV, Hu X, Plemmons R, Pauca P (2002) An evaluation of iris segmentation algorithms in challenging periocular images. Handbook of iris recognition. Springer, Heidelberg. https://doi.org/10.1007/978-1-4471-6784-6_13

    Google Scholar 

  23. Juefei-Xu F, Luu K, Savvides M, Bui TD, Suen CY (2011) Investigating age invariant face recognition based on periocular biometrics. In: International Joint Conference on Biometrics (IJCB). https://doi.org/10.1109/IJCB.2011.6117600, pp 1–7

  24. Kar NB, Babu KS, Sangaiah AK, Bakshi S (2017) Face expression recognition system based on ripplet transform type II and least square SVM. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-017-5485-0

  25. Kim M, Koo J, Cho S, Baek N, Park K (2018) Convolutional neural network based periocular recognition in surveillance environments. IEEE Access 6, 57,291–57,310. https://doi.org/10.1109/ACCESS.2018.2874056

  26. Kishore Kumar K., Pavani M. (2019) Periocular region-based biometric identification using local binary pattern and its variants. In: Information and Communication Technology for Competitive Strategies. https://doi.org/10.1007/978-981-13-0586-3_57. Springer, Singapore

  27. Krause EF (1986) Taxicab geometry: An adventure in non-euclidean geometry

  28. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1, NIPS’12, pp. 1097–1105. Curran Associates Inc. https://doi.org/10.1145/3065386

  29. Kumar KK, Pavani M (2019) Periocular region-based age-invariant face recognition using local binary pattern. In: Microelectronics, Electromagnetics and Telecommunications. https://doi.org/10.1007/978-981-13-1906-8_72. Springer, pp 713–720

  30. Kumar MD, Babaie M, Zhu S, Kalra S, Tizhoosh HR (2017) A comparative study of CNN, BoVW and LBP for classification of histopathological images. In: IEEE Symposium series on computational intelligence (SSCI). https://doi.org/10.1109/SSCI.2017.8285162, pp 1–7

  31. Kumar V, Chhabra JK, Kumar D (2014) Performance evaluation of distance metrics in the clustering algorithms. INFOCOMP 13(1):38–52

    Google Scholar 

  32. Lahdenoja O, Laiho M, Paasio A (2005) Reducing the feature vector length in local binary pattern based face recognition. In: IEEE International conference on image processing. https://doi.org/10.1109/ICIP.2005.1530205, vol 2, pp II–914

  33. Lance GN, Williams WT (1967) Mixed-data classificatory programs I - Agglomerative systems. Australian Comput J 1:15–20

    Google Scholar 

  34. Li S, Jain A (2011) Handbook of face recognition. Springer, Berlin. https://doi.org/10.1007/978-0-85729-932-1

    Book  MATH  Google Scholar 

  35. Liao S, Law MWK, Chung ACS (2009) Dominant local binary patterns for texture classification. IEEE Trans Image Process 18 (5):1107–1118. https://doi.org/10.1109/TIP.2009.2015682

    Article  MathSciNet  MATH  Google Scholar 

  36. Liao S, Zhu X, Lei Z, Zhang L, Li SZ (2007) Learning multi-scale block local binary patterns for face recognition. In: Advances in Biometrics. https://doi.org/10.1007/978-3-540-74549-5_87. Springer, Berlin, pp 828–837

  37. Mäenpää T, Ojala T, Pietikäinen M, Soriano M (2000) Robust texture classification by subsets of local binary patterns. In: 15th International Conference on Pattern Recognition, Barcelona, Spain, 3:947-950. https://doi.org/10.1109/ICPR.2000.903698

  38. Mahalingam G, Ricanek K Jr (2013) LBP-based periocular recognition on challenging face datasets. EURASIP J Image Video Process, 36. https://doi.org/10.1186/1687-5281-2013-36

  39. Malik F, Baharudin B (2013) Analysis of distance metrics in content-based image retrieval using statistical quantized histogram texture features in the DCT domain. J King Saud University - Comput Inform Sci 25(2):207–218. https://doi.org/10.1016/j.jksuci.2012.11.004

    Google Scholar 

  40. Miller P, Lyle J, Pundlik S, Woodard D (2010) Performance evaluation of local appearance based periocular recognition. In: 4th IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS). https://doi.org/10.1109/BTAS.2010.5634536

  41. Miller P, Rawls A, Pundlik S (2010) Personal identification using periocular skin texture. In: Proceedings of the ACM Symposium on Applied Computing (SAC ’10). https://doi.org/10.1145/1774088.1774408, pp 1496–1500

  42. Mistry K, Zhang L, Neoh SC, Lim CP, Fielding B (2017) A micro-GA embedded PSO feature selection approach to intelligent facial emotion recognition. IEEE Trans Cybern 47(6):1496–1509. https://doi.org/10.1109/TCYB.2016.2549639

    Article  Google Scholar 

  43. Mistry K, Zhang L, Sexton G, Zeng Y, He M (2017) Facial expression recongition using firefly-based feature optimization. In: IEEE Congress on evolutionary computation. https://doi.org/10.1109/CEC.2017.7969500, pp 1652–1658

  44. Oh K, Oh BS, Toh KA, Yau WY, Eng HL (2014) Combining sclera and periocular features for multi-modal identity verification. Neurocomputing 128:185–198. https://doi.org/10.1016/j.neucom.2013.01.066

    Article  Google Scholar 

  45. Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classification based on featured distributions. Pattern Recogn 29(1):51–59. https://doi.org/10.1016/0031-3203(95)00067-4

    Article  Google Scholar 

  46. Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987. https://doi.org/10.1109/TPAMI.2002.1017623

    Article  MATH  Google Scholar 

  47. Padole C, Proença H (2012) Periocular recognition: analysis of performance degradation factors. In: 5th IAPR International Conference on Biometrics (ICB). https://doi.org/10.1109/ICB.2012.6199790, pp 439–445

  48. Padole CN, Proença H (2013) Compensating for pose and illumination in unconstrained periocular biometrics. Int J Biometrics 5(3-4):336–359. https://doi.org/10.1504/IJBM.2013.055971

    Article  Google Scholar 

  49. Park U, Ross A, Jain A (2009) Periocular biometrics in the visible spectrum: a feasibility study. In: IEEE 3rd International Conference on Biometrics: Theory, Applications and Systems (BTAS). https://doi.org/10.1109/BTAS.2009.5339068

  50. Pereira TDF, Marcel S (2015) Periocular biometrics in mobile environment. In: IEEE Seventh international conference on biometrics: Theory, Applications and Systems. https://doi.org/10.1109/BTAS.2015.7358785, pp 1–7

  51. Proença H, Alexandre LA (2005) UBIRIS: a noisy iris image database. In: Image Analysis and Processing – ICIAP. https://doi.org/10.1007/11553595_119, pp 970–977

  52. Proença H, Filipe S, Santos R, Oliveira J, Alexandre L (2010) The UBIRIS.v2: a database of visible wavelength iris images captured on-the-move and at-a-distance. IEEE Trans Pattern Anal Mach Intell 32(8):1529–1535. https://doi.org/10.1109/TPAMI.2009.66

    Article  Google Scholar 

  53. Proença H, Neves JC (2018) Deep-PRWIS: periocular recognition without the iris and sclera using deep learning frameworks. IEEE Trans Inform Forensics Secur 13 (4):888–896. https://doi.org/10.1109/TIFS.2017.2771230

    Article  Google Scholar 

  54. Proença H, Neves JC (2019) A reminiscence of Mastermind: Iris/periocular biometrics by In-Set CNN iterative analysis. IEEE Trans Inform Forensics Secur 14 (7):1702–1712. https://doi.org/10.1109/TIFS.2018.2883853

    Article  Google Scholar 

  55. Rattani A, Derakhshani R, Saripalle SK, Gottemukkula V (2016) Competition on mobile ocular biometric recognition. In: IEEE International Conference on Image Processing (ICIP). https://doi.org/10.1109/ICIP.2016.7532371, pp 320–324

  56. Sabhanayagam T, Venkatesan VP, Senthamaraikannan K (2018) A comprehensive survey on various biometric systems. Int J Appl Eng Res 13(5):2276–2297

    Google Scholar 

  57. Santos G, Grancho E, Bernardo M, Fiadeiro P (2014) Fusing iris and periocular information for cross-sensor recognition. Pattern Recogn Lett. https://doi.org/10.1016/j.patrec.2014.09.012

  58. Sharma A, Verma S, Vatsa M, Singh R (2014) On cross spectral periocular recognition. In: IEEE International Conference on Image Processing (ICIP). https://doi.org/10.1109/ICIP.2014.7026014, pp 5007–5011

  59. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:https://arxiv.org/abs/1409.1556

  60. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. https://doi.org/10.1109/CVPR.2015.7298594, pp 1–9

  61. Takala V, Ahonen T, Pietikäinen M (2005) Block-based methods for image retrieval using local binary patterns. In: Image Analysis. https://doi.org/10.1007/11499145_89, pp 882–891

  62. Uzair M, Mahmood A, Mian A, McDonald C (2013) A compact discriminative representation for efficient image-set classification with application to biometric recognition. In: 6th IAPR International Conference on Biometrics (ICB). https://doi.org/10.1109/ICB.2013.6612959

  63. Wang X, Ly V, Guo G, Kambhamettu C (2013) A new approach for 2D-3D heterogeneous face recognition. In: IEEE International symposium on multimedia. https://doi.org/10.1109/ISM.2013.58, pp 301–304

  64. Wong Y, Chen S, Mau S, Sanderson C, Lovell BC (2011) Patch-based probabilistic image quality assessment for face selection and improved video-based face recognition. In: IEEE Biometrics workshop, computer vision and pattern recognition (CVPR) workshops. https://doi.org/10.1109/CVPRW.2011.5981881, pp 81–88

  65. Woodard D, Pundlik S, Miller P (2010) On the fusion of periocular and iris biometrics in non-ideal imagery. In: 20th International Conference on Pattern Recognition (ICPR). https://doi.org/10.1109/ICPR.2010.58, pp 201–204

  66. Woodard D, Pundlik S, Miller P, Lyle J (2011) Appearance - based periocular features in the context of face and non-ideal iris recognition. J Signal Image and Video Process 5(4):443–455. https://doi.org/10.1007/s11760-011-0248-2

    Article  Google Scholar 

  67. Xu J, Cha M, Heyman JL, Venugopalan S, Abiantun R, Savvides M (2010) Robust local binary pattern feature sets for periocular biometric identification. In: Fourth IEEE International Conference on Biometrics: Theory Applications and Systems (BTAS). https://doi.org/10.1109/BTAS.2010.5634504, pp 1–8

  68. Zhang G, Huang X, Li SZ, Wang Y, Wu X (2005) Boosting local binary pattern (LBP)-based face recognition. In: Advances in Biometric Person Authentication. https://doi.org/10.1007/978-3-540-30548-4_21. Berlin, Heidelberg, pp 179–186

  69. Zhang L, Mistry K, Neoh SC, Lim CP (2016) Intelligent facial emotion recognition using moth-firefly optimization. Knowl-Based Syst 111:248–267. https://doi.org/10.1016/j.knosys.2016.08.018

    Article  Google Scholar 

  70. Zhao Z, Kumar A (2018) Improving periocular recognition by explicit attention to critical regions in deep neural network. IEEE Trans Inform Forensics Secur 13 (12):2937–2952. https://doi.org/10.1109/TIFS.2018.2833018

    Article  Google Scholar 

Download references

Acknowledgments

This research is partially supported by the following projects:

(1) Grant No. ETI/359/2014 by Fund for Improvement of S&T Infrastructure in Universities and Higher Educational Institutions (FIST) Program 2016, Department of Science and Technology, Government of India.

(2) Information Security Education & Awareness Project (Phase II), Ministry of Electronics and Information Technology (MeitY), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sambit Bakshi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, G., Bakshi, S., Sa, P.K. et al. Non-overlapped blockwise interpolated local binary pattern as periocular feature. Multimed Tools Appl 80, 16565–16597 (2021). https://doi.org/10.1007/s11042-020-08708-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-08708-w

Keywords

Navigation