Skip to main content
Log in

Pathogenesis of Dermatophytosis: Sensing the Host Tissue

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

The genera Trichophyton, Microsporum, and Epidermophyton include filamentous fungi that cause dermatophytosis, a superficial infection of the skin, stratum corneum, nail beds, and hair follicles. The ability of dermatophytes to adhere to these substrates and adapt to the host environment is essential for the establishment of infection. Several fungal enzymes and proteins participate in this adaptive response to the environment and to keratin degradation. Transcription factors such as PacC and Hfs1, as well as heat shock proteins, are involved in sensing and adapting to the acidic pH of the skin in the early stages of fungal–host interaction. During dermatophyte growth, with keratin as the sole carbon source, the extracellular pH shifts from acidic to alkaline. This creates an environment in which most of the known keratinolytic proteases exhibit optimal activity. These events culminate in the establishment and maintenance of the infection, which can be chronic or acute depending on the dermatophyte species. This review focuses on these and other molecular aspects of the dermatophyte–host interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Hube B, Hay R, Brasch J, Veraldi S, Schaller M. Dermatomycoses and inflammation: the adaptive balance between growth, damage, and survival. J Mycol Med. 2015;25(1):e44–58.

    Article  CAS  PubMed  Google Scholar 

  2. Romani L. Immunity to fungal infections. Nat Rev Immunol. 2011;11(4):275–88.

    Article  CAS  PubMed  Google Scholar 

  3. Brasch J, Zaldua M. Enzyme patterns of dermatophytes. Mycoses. 1994;37(1–2):11–6.

    Article  CAS  PubMed  Google Scholar 

  4. Monod M. Secreted proteases from dermatophytes. Mycopathologia. 2008;166(5–6):285–94.

    Article  PubMed  Google Scholar 

  5. Brock M. Fungal metabolism in host niches. Curr Opin Microbiol. 2009;12(4):371–6.

    Article  CAS  PubMed  Google Scholar 

  6. Nenoff P, Kruger C, Ginter-Hanselmayer G, Tietz HJ. Mycology—an update. Part 1: Dermatomycoses: causative agents, epidemiology and pathogenesis. J Dtsch Dermatol Ges. 2014;12(3):188–209; quiz 10, 188–211; quiz 2.

  7. Faure-Cognet O, Fricker-Hidalgo H, Pelloux H, Leccia MT. Superficial fungal infections in a French teaching hospital in Grenoble area: retrospective study on 5470 samples from 2001 to 2011. Mycopathologia. 2015;181(1–2):59–66.

    PubMed  Google Scholar 

  8. Rodwell GE, Bayles CL, Towersey L, Aly R. The prevalence of dermatophyte infection in patients infected with human immunodeficiency virus. Int J Dermatol. 2008;47(4):339–43.

    Article  PubMed  Google Scholar 

  9. Peres NTA, Maranhão FC, Rossi A, Martinez-Rossi NM. Dermatophytes: host-pathogen interaction and antifungal resistance. An Bras Dermatol. 2010;85(5):657–67.

    Article  PubMed  Google Scholar 

  10. Chermette R, Ferreiro L, Guillot J. Dermatophytoses in animals. Mycopathologia. 2008;166(5–6):385–405.

    Article  PubMed  Google Scholar 

  11. Martinez DA, Oliver BG, Graser Y et al. Comparative genome analysis of Trichophyton rubrum and related dermatophytes reveals candidate genes involved in infection. MBio. 2012. doi:10.1128/mBio.00259-12.

    PubMed  PubMed Central  Google Scholar 

  12. Garcia-Romero MT, Arenas R. New insights into genes, immunity, and the occurrence of dermatophytosis. J Invest Dermatol. 2015;135(3):655–7.

    Article  CAS  PubMed  Google Scholar 

  13. Seebacher C, Bouchara JP, Mignon B. Updates on the epidemiology of dermatophyte infections. Mycopathologia. 2008;166(5–6):335–52.

    Article  PubMed  Google Scholar 

  14. Havlickova B, Czaika VA, Friedrich M. Epidemiological trends in skin mycoses worldwide. Mycoses. 2008;51(Suppl 4):2–15.

    Article  PubMed  Google Scholar 

  15. Preuett BL, Schuenemann E, Brown JT, et al. Comparative analysis of secreted enzymes between the anthropophilic-zoophilic sister species Trichophyton tonsurans and Trichophyton equinum. Fungal Biol. 2010;114(5–6):429–37.

    Article  CAS  PubMed  Google Scholar 

  16. Giddey K, Monod M, Barblan J, et al. Comprehensive analysis of proteins secreted by Trichophyton rubrum and Trichophyton violaceum under in vitro conditions. J Proteome Res. 2007;6(8):3081–92.

    Article  CAS  PubMed  Google Scholar 

  17. Peres NT, Silva LG, Santos RD, et al. In vitro and ex vivo infection models help assess the molecular aspects of the interaction of Trichophyton rubrum with the host milieu. Med Mycol. 2016;54(4):420–7.

    Article  PubMed  Google Scholar 

  18. Ogawa H, Summerbell RC, Clemons KV, et al. Dermatophytes and host defense in cutaneous mycoses. Med Mycol. 1998;36:166–73.

    PubMed  Google Scholar 

  19. Martinez-Rossi NM, Persinoti GF, Peres NTA, Rossi A. Role of pH in the pathogenesis of dermatophytoses. Mycoses. 2012;55(5):381–7.

    Article  CAS  PubMed  Google Scholar 

  20. Zurita J, Hay RJ. Adherence of dermatophyte microconidia and arthroconidia to human keratinocytes in vitro. J Invest Dermatol. 1987;89(5):529–34.

    Article  CAS  PubMed  Google Scholar 

  21. Duek L, Kaufman G, Ulman Y, Berdicevsky I. The pathogenesis of dermatophyte infections in human skin sections. J Infect. 2004;48(2):175–80.

    Article  CAS  PubMed  Google Scholar 

  22. Kaufman G, Horwitz BA, Duek L, Ullman Y, Berdicevsky I. Infection stages of the dermatophyte pathogen Trichophyton: microscopic characterization and proteolytic enzymes. Med Mycol. 2007;45(2):149–55.

    Article  CAS  PubMed  Google Scholar 

  23. Esquenazi D, Alviano CS, de Souza W, Rozental S. The influence of surface carbohydrates during in vitro infection of mammalian cells by the dermatophyte Trichophyton rubrum. Res Microbiol. 2004;155(3):144–53.

    Article  CAS  PubMed  Google Scholar 

  24. Esquenazi D, de Souza W, Alviano CS, Rozental S. The role of surface carbohydrates on the interaction of microconidia of Trichophyton mentagrophytes with epithelial cells. FEMS Immunol Med Microbiol. 2003;35(2):113–23.

    Article  CAS  PubMed  Google Scholar 

  25. Baldo A, Mathy A, Tabart J, et al. Secreted subtilisin Sub3 from Microsporum canis is required for adherence to but not for invasion of the epidermis. Br J Dermatol. 2010;162(5):990–7.

    Article  CAS  PubMed  Google Scholar 

  26. Hung CY, Yu JJ, Seshan KR, Reichard U, Cole GT. A parasitic phase-specific adhesin of Coccidioides immitis contributes to the virulence of this respiratory fungal pathogen. Infect Immun. 2002;70(7):3443–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shiraki Y, Ishibashi Y, Hiruma M, Nishikawa A, Ikeda S. Cytokine secretion profiles of human keratinocytes during Trichophyton tonsurans and Arthroderma benhamiae infections. J Med Microbiol. 2006;55(Pt 9):1175–85.

    Article  CAS  PubMed  Google Scholar 

  28. Cambier L, Weatherspoon A, Defaweux V, et al. Assessment of the cutaneous immune response during Arthroderma benhamiae and A. vanbreuseghemii infection using an experimental mouse model. Br J Dermatol. 2014;170(3):625–33.

    Article  CAS  PubMed  Google Scholar 

  29. Burmester A, Shelest E, Glockner G, et al. Comparative and functional genomics provide insights into the pathogenicity of dermatophytic fungi. Genome Biol. 2011;12(1):R7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Heddergott C, Bruns S, Nietzsche S, et al. The Arthroderma benhamiae hydrophobin HypA mediates hydrophobicity and influences recognition by human immune effector cells. Eukaryot Cell. 2012;11(5):673–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Campos MR, Russo M, Gomes E, Almeida SR. Stimulation, inhibition and death of macrophages infected with Trichophyton rubrum. Microbes Infect. 2006;8(2):372–9.

    Article  CAS  PubMed  Google Scholar 

  32. Santiago K, Bomfim GF, Criado PR, Almeida SR. Monocyte-derived dendritic cells from patients with dermatophytosis restrict the growth of Trichophyton rubrum and induce CD4-T cell activation. PLoS One. 2014;9(11):e110879.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Li H, Wu S, Mao L, et al. Human pathogenic fungus Trichophyton schoenleinii activates the NLRP3 inflammasome. Protein Cell. 2013;4(7):529–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mao L, Zhang L, Li H, et al. Pathogenic fungus Microsporum canis activates the NLRP3 inflammasome. Infect Immun. 2014;82(2):882–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Yoshikawa FS, Ferreira LG, de Almeida SR. IL-1 signaling inhibits Trichophyton rubrum conidia development and modulates the IL-17 response in vivo. Virulence. 2015;6(5):449–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Joly S, Sutterwala FS. Fungal pathogen recognition by the NLRP3 inflammasome. Virulence. 2010;1(4):276–80.

    Article  PubMed  Google Scholar 

  37. Lorenz MC, Fink GR. The glyoxylate cycle is required for fungal virulence. Nature. 2001;412(6842):83–6.

    Article  CAS  PubMed  Google Scholar 

  38. Staib P, Zaugg C, Mignon B, et al. Differential gene expression in the pathogenic dermatophyte Arthroderma benhamiae in vitro versus during infection. Microbiology. 2010;156(Pt 3):884–95.

    Article  CAS  PubMed  Google Scholar 

  39. Maranhão FCA, Paião FG, Martinez-Rossi NM. Isolation of transcripts over-expressed in human pathogen Trichophyton rubrum during growth in keratin. Microb Pathog. 2007;43:166–72.

    Article  PubMed  CAS  Google Scholar 

  40. Vila TV, Rozental S, de Sa Guimaraes CM. A new model of in vitro fungal biofilms formed on human nail fragments allows reliable testing of laser and light therapies against onychomycosis. Lasers Med Sci. 2015;30(3):1031–9.

    Article  PubMed  Google Scholar 

  41. Costa-Orlandi CB, Sardi JC, Santos CT, Fusco-Almeida AM, Mendes-Giannini MJ. In vitro characterization of Trichophyton rubrum and T. mentagrophytes biofilms. Biofouling. 2014;30(6):719–27.

    Article  CAS  PubMed  Google Scholar 

  42. Burkhart CN, Burkhart CG, Gupta AK. Dermatophytoma: Recalcitrance to treatment because of existence of fungal biofilm. J Am Acad Dermatol. 2002;47(4):629–31.

    Article  PubMed  Google Scholar 

  43. Matousek JL, Campbell KL. A comparative review of cutaneous pH. Vet Dermatol. 2002;13(6):293–300.

    Article  PubMed  Google Scholar 

  44. Ohman H, Vahlquist A. The pH gradient over the stratum corneum differs in X-linked recessive and autosomal dominant ichthyosis: a clue to the molecular origin of the “acid skin mantle”? J Invest Dermatol. 1998;111(4):674–7.

    Article  CAS  PubMed  Google Scholar 

  45. Gibbs NK, Norval M. Urocanic acid in the skin: a mixed blessing? J Invest Dermatol. 2011;131(1):14–7.

    Article  CAS  PubMed  Google Scholar 

  46. Fluhr JW, Elias PM, Man MQ, et al. Is the filaggrin-histidine-urocanic acid pathway essential for stratum corneum acidification? J Invest Dermatol. 2010;130(8):2141–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Drake DR, Brogden KA, Dawson DV, Wertz PW. Thematic review series: skin lipids. Antimicrobial lipids at the skin surface. J Lipid Res. 2008;49(1):4–11.

    Article  CAS  PubMed  Google Scholar 

  48. Peres NTA, Cursino-Santos JR, Rossi A, Martinez-Rossi NM. In vitro susceptibility to antimycotic drug undecanoic acid, a medium-chain fatty acid, is nutrient-dependent in the dermatophyte Trichophyton rubrum. World J Microbiol Biotechnol. 2011;27:1719–23.

    Article  CAS  Google Scholar 

  49. Brito-Madurro AG, Prade RA, Madurro JM, et al. A single amino acid substitution in one of the lipases of Aspergillus nidulans confers resistance to the antimycotic drug undecanoic acid. Biochem Genet. 2008;46(9–10):557–65.

    Article  CAS  PubMed  Google Scholar 

  50. Maranhão FCA, Paião FG, Fachin AL, Martinez-Rossi NM. Membrane transporter proteins are involved in Trichophyton rubrum pathogenesis. J Med Microbiol. 2009;58(Pt 2):163–8.

    Article  PubMed  CAS  Google Scholar 

  51. Ferreira-Nozawa MS, Nozawa SR, Martinez-Rossi NM, Rossi A. The dermatophyte Trichophyton rubrum secretes an EDTA-sensitive alkaline phosphatase on high-phosphate medium. Braz J Microbiol. 2003;34(2):161–4.

    Article  CAS  Google Scholar 

  52. Peres NTA, Sanches PR, Falcão JP, et al. Transcriptional profiling reveals the expression of novel genes in response to various stimuli in the human dermatophyte Trichophyton rubrum. BMC Microbiol. 2010;10:39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Maranhão FCA, Silveira HCS, Rossi A, Martinez-Rossi NM. Isolation of transcripts overexpressed in the human pathogen Trichophyton rubrum grown in lipid as carbon source. Can J Microbiol. 2011;57(4):333–8.

    Article  PubMed  Google Scholar 

  54. Martinez-Rossi NM, Peres NTA, Rossi A. Antifungal resistance mechanisms in dermatophytes. Mycopathologia. 2008;166:369–83.

    Article  PubMed  Google Scholar 

  55. Nahas E, Terenzi HF, Rossi A. Effect of carbon source and pH on the production and secretion of acid-phosphatase (EC3.1.3.2) and alkaline-phosphatase (EC3.1.3.1) in Neurospora crassa. J Gen Microbiol. 1982;128(SEP):2017–21.

  56. Ferreira-Nozawa MS, Silveira HCS, Ono CJ, Fachin AL, Rossi A, Martinez-Rossi NM. The pH signaling transcription factor PacC mediates the growth of Trichophyton rubrum on human nail in vitro. Med Mycol. 2006;44(7):641–5.

    Article  CAS  PubMed  Google Scholar 

  57. Lechenne B, Reichard U, Zaugg C, et al. Sulphite efflux pumps in Aspergillus fumigatus and dermatophytes. Microbiology. 2007;153(Pt 3):905–13.

    Article  CAS  PubMed  Google Scholar 

  58. Jousson O, Lechenne B, Bontems O, et al. Secreted subtilisin gene family in Trichophyton rubrum. Gene. 2004;339:79–88.

    Article  CAS  PubMed  Google Scholar 

  59. Kasperova A, Cahlikova R, Kunert J, et al. Exposition of dermatophyte Trichophyton mentagrophytes to L-cystine induces expression and activation of cysteine dioxygenase. Mycoses. 2014;57(11):672–8.

    Article  CAS  PubMed  Google Scholar 

  60. Grumbt M, Monod M, Yamada T, Hertweck C, Kunert J, Staib P. Keratin degradation by dermatophytes relies on cysteine dioxygenase and a sulfite efflux pump. J Invest Dermatol. 2013;133(6):1550–5.

    Article  CAS  PubMed  Google Scholar 

  61. Silveira HCS, Gras DE, Cazzaniga RA, et al. Transcriptional profiling reveals genes in the human pathogen Trichophyton rubrum that are expressed in response to pH signaling. Microb Pathog. 2010;48(2):91–6.

    Article  CAS  PubMed  Google Scholar 

  62. Cornet M, Gaillardin C. pH signaling in human fungal pathogens: a new target for antifungal strategies. Eukaryot Cell. 2014;13(3):342–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Tilburn J, Sarkar S, Widdick DA, et al. The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO J. 1995;14(4):779–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Sarkar S, Caddick M, Bignell E, Tilburn J, Arst HN Jr. Regulation of gene expression by ambient pH in Aspergillus: genes expressed at acid pH. Biochem Soc Trans. 1995;24:360–3.

    Article  Google Scholar 

  65. Orejas M, Espeso EA, Tilburn J, et al. Activation of the Aspergillus PacC transcription factor in response to alkaline ambient pH requires proteolysis of the carboxy-terminal moiety. Genes Dev. 1995;9(13):1622–32.

    Article  CAS  PubMed  Google Scholar 

  66. Maccheroni W Jr, May GS, Martinez-Rossi NM, Rossi A. The sequence of palF, an environmental pH response gene in Aspergillus nidulans. Gene. 1997;194(2):163–7.

    Article  CAS  PubMed  Google Scholar 

  67. Calcagno-Pizarelli AM, Negrete-Urtasun S, Denison SH, et al. Establishment of the ambient pH signaling complex in Aspergillus nidulans: PalI assists plasma membrane localization of PalH. Eukaryot Cell. 2007;6(12):2365–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Galindo A, Hervas-Aguilar A, Rodriguez-Galan O, et al. PalC, one of two Bro1 domain proteins in the fungal pH signalling pathway, localizes to cortical structures and binds Vps32. Traffic. 2007;8(10):1346–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hervas-Aguilar A, Rodriguez JM, Tilburn J, Arst HN Jr, Peñalva MA. Evidence for the direct involvement of the proteasome in the proteolytic processing of the Aspergillus nidulans zinc finger transcription factor PacC. J Biol Chem. 2007;282(48):34735–47.

    Article  CAS  PubMed  Google Scholar 

  70. Galindo A, Calcagno-Pizarelli AM, Arst HN Jr, Penalva MA. An ordered pathway for the assembly of fungal ESCRT-containing ambient pH signalling complexes at the plasma membrane. J Cell Sci. 2012;125(Pt 7):1784–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Negrete-Urtasun S, Reiter W, Diez E, et al. Ambient pH signal transduction in Aspergillus: completion of gene characterization. Mol Microbiol. 1999;33(5):994–1003.

    Article  CAS  PubMed  Google Scholar 

  72. Rossi A, Cruz AHC, Santos RS, et al. Ambient pH sensing in filamentous fungi: pitfalls in elucidating regulatory hierarchical signaling networks. IUBMB Life. 2013;65:930–5.

    Article  CAS  PubMed  Google Scholar 

  73. Vincent O, Rainbow L, Tilburn J, Arst HN, Peñalva MA. YPXL/I is a protein interaction motif recognized by Aspergillus PalA and its human homologue, AIP1/Alix. Mol Cell Biol. 2003;23(5):1647–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mendes NS, Trevisan GL, Cruz AHS, et al. Transcription of N- and O-linked mannosyltransferase genes is modulated by the pacC gene in the human dermatophyte Trichophyton rubrum. FEBS Open Bio. 2012;2:294–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nishizawa M, Tanigawa M, Hayashi M, et al. Pho85 kinase, a cyclin-dependent kinase, regulates nuclear accumulation of the Rim101 transcription factor in the stress response of Saccharomyces cerevisiae. Eukaryot Cell. 2010;9(6):943–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Maccheroni W Jr, Martinez-Rossi NM, Rossi A. Does gene palB regulate the transcription or the post-translational modification of Pi-repressible phosphatases of Aspergillus nidulans? Brazilian J Med Biol Res. 1995;28(1):31–8.

    CAS  Google Scholar 

  77. Nozawa SR, May GS, Martinez-Rossi NM, et al. Mutation in a calpain-like protease affects the posttranslational mannosylation of phosphatases in Aspergillus nidulans. Fungal Genet Biol. 2003;38(2):220–7.

    Article  CAS  PubMed  Google Scholar 

  78. Silva EM, Freitas JS, Gras DE, et al. Identification of genes differentially expressed in a strain of the mold Aspergillus nidulans carrying a loss-of-function mutation in the palA gene. Can J Microbiol. 2008;54(10):803–11.

    Article  CAS  PubMed  Google Scholar 

  79. Nozawa SR, Ferreira-Nozawa MS, Martinez-Rossi NM, Rossi A. The pH-induced glycosylation of secreted phosphatases is mediated in Aspergillus nidulans by the regulatory gene pacC-dependent pathway. Fungal Genet Biol. 2003;39(3):286–95.

    Article  CAS  PubMed  Google Scholar 

  80. Nozawa SR, Thedei G, Crott LSP, Barbosa JE, Rossi A. The synthesis of phosphate-repressible alkaline phosphatase does not appear to be regulated by ambient pH in the filamentous mould Neurospora crassa. Br J Microbiol. 2002;33(1):92–5.

    CAS  Google Scholar 

  81. Palma MS, Han SW, Rossi A. Dissociation and catalytic activity of phosphate-repressible alkaline-phosphatase from Neurospora crassa. Phytochemistry. 1989;28(12):3281–4.

    Article  CAS  Google Scholar 

  82. Nahas E, Rossi A. Properties of a repressible alkaline-phosphatase secreted by the wild-type strain 74A of Neurospora crassa. Phytochemistry. 1984;23(3):507–10.

    Article  CAS  Google Scholar 

  83. Gentzsch M, Tanner W. The PMT gene family: protein O-glycosylation in Saccharomyces cerevisiae is vital. EMBO J. 1996;15(21):5752–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Gemmill TR, Trimble RB. Overview of N- and O-linked oligosaccharide structures found in various yeast species. Biochim Biophys Acta. 1999;1426(2):227–37.

    Article  CAS  PubMed  Google Scholar 

  85. Motteram J, Lovegrove A, Pirie E, et al. Aberrant protein N-glycosylation impacts upon infection-related growth transitions of the haploid plant-pathogenic fungus Mycosphaerella graminicola. Mol Microbiol. 2011;81(2):415–33.

    Article  CAS  PubMed  Google Scholar 

  86. Lommel M, Schott A, Jank T, Hofmann V, Strahl S. A conserved acidic motif is crucial for enzymatic activity of protein O-mannosyltransferases. J Biol Chem. 2011;286(46):39768–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mouyna I, Kniemeyer O, Jank T, et al. Members of protein O-mannosyltransferase family in Aspergillus fumigatus differentially affect growth, morphogenesis and viability. Mol Microbiol. 2010;76(5):1205–21.

    Article  CAS  PubMed  Google Scholar 

  88. Shibata N, Kobayashi H, Suzuki S. Immunochemistry of pathogenic yeast, Candida species, focusing on mannan. Proc Jpn Acad Ser B Phys Biol Sci. 2012;88(6):250–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lussier M, Sdicu AM, Bussey H. The KTR and MNN1 mannosyltransferase families of Saccharomyces cerevisiae. Biochim Biophys Acta. 1999;1426(2):323–34.

    Article  CAS  PubMed  Google Scholar 

  90. Brockhausen I, Reck F, Kuhns W, et al. Substrate specificity and inhibition of UDP-GlcNAc:GlcNAc beta 1-2Man alpha 1-6R beta 1,6-N-acetylglucosaminyltransferase V using synthetic substrate analogues. Glycoconj J. 1995;12(3):371–9.

    Article  CAS  PubMed  Google Scholar 

  91. Ecker M, Mrsa V, Hagen I, et al. O-mannosylation precedes and potentially controls the N-glycosylation of a yeast cell wall glycoprotein. EMBO Rep. 2003;4(6):628–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gorka-Niec W, Kania A, Perlinska-Lenart U, et al. Integration of additional copies of Trichoderma reesei gene encoding protein O-mannosyltransferase I results in a decrease of the enzyme activity and alteration of cell wall composition. Fungal Biol. 2011;115(2):124–32.

    Article  CAS  PubMed  Google Scholar 

  93. Maddi A, Free SJ. Alpha-1,6-Mannosylation of N-linked oligosaccharide present on cell wall proteins is required for their incorporation into the cell wall in the filamentous fungus Neurospora crassa. Eukaryot Cell. 2010;9(11):1766–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kotz A, Wagener J, Engel J, et al. Approaching the secrets of N-glycosylation in Aspergillus fumigatus: characterization of the AfOch1 protein. PLoS ONE. 2010;5(12):e15729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sheth CC, Hall R, Lewis L, et al. Glycosylation status of the C. albicans cell wall affects the efficiency of neutrophil phagocytosis and killing but not cytokine signaling. Med Mycol. 2010;49(5):513–24.

    Google Scholar 

  96. Diaz-Jimenez DF, Mora-Montes HM, Hernandez-Cervantes A, et al. Biochemical characterization of recombinant Candida albicans mannosyltransferases Mnt1, Mnt2 and Mnt5 reveals new functions in O- and N-mannan biosynthesis. Biochem Biophys Res Commun. 2012;419(1):77–82.

    Article  CAS  PubMed  Google Scholar 

  97. De Maio A. Extracellular heat shock proteins, cellular export vesicles, and the Stress Observation System: a form of communication during injury, infection, and cell damage. It is never known how far a controversial finding will go! Dedicated to Ferruccio Ritossa. Cell Stress Chaperones. 2011;16(3):235–49.

    Article  CAS  PubMed  Google Scholar 

  98. Garrido C, Gurbuxani S, Ravagnan L, Kroemer G. Heat shock proteins: endogenous modulators of apoptotic cell death. Biochem Biophys Res Commun. 2001;286(3):433–42.

    Article  CAS  PubMed  Google Scholar 

  99. Sorger PK, Pelham HR. Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell. 1988;54(6):855–64.

    Article  CAS  PubMed  Google Scholar 

  100. Wiederrecht G, Seto D, Parker CS. Isolation of the gene encoding the S. cerevisiae heat shock transcription factor. Cell. 1988;54(6):841–53.

    Article  CAS  PubMed  Google Scholar 

  101. Martinez-Pastor MT, Marchler G, Schuller C, et al. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J. 1996;15(9):2227–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Schmitt AP, McEntee K. Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc Natl Acad Sci USA. 1996;93(12):5777–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Boy-Marcotte E, Lagniel G, Perrot M, et al. The heat shock response in yeast: differential regulations and contributions of the Msn2p/Msn4p and Hsf1p regulons. Mol Microbiol. 1999;33(2):274–83.

    Article  CAS  PubMed  Google Scholar 

  104. Grably MR, Stanhill A, Tell O, Engelberg D. HSF and Msn2/4p can exclusively or cooperatively activate the yeast HSP104 gene. Mol Microbiol. 2002;44(1):21–35.

    Article  CAS  PubMed  Google Scholar 

  105. Hahn JS, Thiele DJ. Activation of the Saccharomyces cerevisiae heat shock transcription factor under glucose starvation conditions by Snf1 protein kinase. J Biol Chem. 2004;279(7):5169–76.

    Article  CAS  PubMed  Google Scholar 

  106. Zarzov P, Boucherie H, Mann C. A yeast heat shock transcription factor (Hsf1) mutant is defective in both Hsc82/Hsp82 synthesis and spindle pole body duplication. J Cell Sci. 1997;110(Pt 16):1879–91.

    CAS  PubMed  Google Scholar 

  107. Ghosh A. Small heat shock proteins (HSP12, HSP20 and HSP30) play a role in Ustilago maydis pathogenesis. FEMS Microbiol Lett. 2014;361:17–24.

    Article  CAS  PubMed  Google Scholar 

  108. Monahan IM, Betts J, Banerjee DK, Butcher PD. Differential expression of mycobacterial proteins following phagocytosis by macrophages. Microbiology. 2001;147(Pt 2):459–71.

    Article  CAS  PubMed  Google Scholar 

  109. Becherelli M, Tao J, Ryder NS. Involvement of heat shock proteins in Candida albicans biofilm formation. J Mol Microbiol Biotechnol. 2013;23(6):396–400.

    CAS  PubMed  Google Scholar 

  110. Baeza LC, Bailao AM, Borges CL, et al. cDNA representational difference analysis used in the identification of genes expressed by Trichophyton rubrum during contact with keratin. Microbes Infect. 2007;9(12–13):1415–21.

    Article  CAS  PubMed  Google Scholar 

  111. Jacob TR, Peres NT, Martins MP, et al. Heat shock protein 90 (Hsp90) as a molecular target for the development of novel drugs against the dermatophyte Trichophyton rubrum. Front Microbiol. 2015;6:1241.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Martinez-Rossi NM, Jacob TR, Sanches PR, et al. Heat shock proteins in dermatophytes: current advances and perspectives. Curr Genomics. 2016;17(2):99–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Liu T, Xu X, Leng W, Xue Y, Dong J, Jin Q. Analysis of gene expression changes in Trichophyton rubrum after skin interaction. J Med Microbiol. 2014;63(Pt 5):642–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Noble SM, French S, Kohn LA, Chen V, Johnson AD. Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity. Nat Genet. 2010;42(7):590–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Singh-Babak SD, Babak T, Diezmann S, et al. Global analysis of the evolution and mechanism of echinocandin resistance in Candida glabrata. PLoS Pathog. 2012;8(5):e1002718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the Brazilian Funding Agencies for the continuous support to our projects: FAPESP (Grant No. 2014/03847-7 and others) CNPq, CAPES, and FAEPA. We also thank Dr. Elza Lang that generously provided the image of T. rubrum germinated on human skin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilce M. Martinez-Rossi.

Ethics declarations

Conflicts of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez-Rossi, N.M., Peres, N.T.A. & Rossi, A. Pathogenesis of Dermatophytosis: Sensing the Host Tissue. Mycopathologia 182, 215–227 (2017). https://doi.org/10.1007/s11046-016-0057-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-016-0057-9

Keywords

Navigation