Skip to main content
Log in

Doping effects on the structural, magnetic, and hyperfine properties of Gd-doped SnO2 nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this work we present the study of the structural, magnetic, and hyperfine properties of Gd-doped SnO2 nanoparticles synthesized by a polymer precursor method. The X-ray diffraction data analysis shows the formation of the rutile-type structure in all samples with Gd content from 1.0 to 10.0 mol%. The mean crystallite size is ~11 nm for the 1.0 mol% Gd-doped samples and it shows a decreasing tendency as the Gd content is increased. The analysis of magnetic measurements indicates the coexistence of ferromagnetic and paramagnetic phases for the 1.0 mol% Gd-doped sample; however, above that content, only a paramagnetic phase is observed. The ferromagnetic phase observed in the 1.0 mol% Gd-doped sample has been assigned to the presence of bound magnetic polarons which overlap to create a spin-split impurity band. Room-temperature 119Sn Mössbauer measurements reveal the occurrence of strong electric quadrupole interactions. It has been determined that the absence of magnetic interactions even for 1.0 mol% Gd-doped sample has been related to the weak magnetic field associated to the exchange interaction between magnetic ions and the donor impurity band. The broad distribution of electric quadrupole interactions are attributed to the several non-equivalent surroundings of Sn4+ ions provoked by the entrance of Gd3+ ions and to the likely presence of Sn2+ ions. The isomer shift seems to be nearly independent of the Gd content for samples with Gd content below 7.5 mol%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adhikari R, Das AK, Karmakar D, Ghatak J (2010) Gd-doped SnO2 nanoparticles: structure and magnetism. J Magn Magn Mater 322:3631–3637

    Article  Google Scholar 

  • Aragón FH (2013) Study of the origin of non-conventional magnetism in metal-doped SnO2 nanoparticles. PhD. thesis, University of Brasilia, Brasília

  • Aragón FH, Coaquira JAH, Candela DS, Baggio Saitovitch E, Hidalgo P, Gouvêa D, Morais PC (2010a) Structural and hyperfine properties of Cr-doped SnO2 nanoparticles. J Phys 217(012079):1–4

    Google Scholar 

  • Aragón FH, Coaquira JAH, Hidalgo P, Brito SLM, Gouvêa D, Castro RHR (2010b) Structural and magnetic properties of pure and nickel doped SnO2 nanoparticles. J Phys 22(496003):1–9

    Google Scholar 

  • Aragón FH, Chitta VA, Coaquira JAH, Hidalgo P, Brito HF (2013a) Long-range ferromagnetic order induced by a donor impurity band exchange in SnO2:Er3+ nanoparticles. J Appl Phys 114(203902):1–7

    Google Scholar 

  • Aragón FH, Coaquira JAH, Hidalgo P, Cohen R, Nagamine LCCM, da Silva SW, Morais PC, Brito HF (2013b) Experimental evidences of substitutional solution of Er dopant in Er-doped SnO2 nanoparticles. J Nanopart Res 15(1343):1–10

    Google Scholar 

  • Castro RHR, Hidalgo P, Coaquira JAH, Bettini J, Zanchet D, Gouvêa D (2005) Surface segregation in SnO2–Fe2O3 nanopowders and effects in Mössbauer spectroscopy. Eur J Inorg Chem 11:2134–2138

    Article  Google Scholar 

  • Coey JMD, Douvalis AP, Fitzgerald CB, Venkatesan M (2004) Ferromagnetism in Fe-doped SnO2 thin films. Appl Phys Lett 84:1332–1334

    Article  Google Scholar 

  • Coey JMD, Venkatesan M, Fitzgerald CB (2005) Donor impurity band exchange in diluted ferromagnetic oxides. Nat Mater 4:173–179

    Article  Google Scholar 

  • Coey JMD, Wongsaprom K, Alaria J, Venkatesan M (2008) Charge-transfer ferromagnetism in oxide nanoparticles. J Phys D 41:134012

    Article  Google Scholar 

  • Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D (2000) Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287:1019–1022

    Article  Google Scholar 

  • Dimri MC, Khanduri H, Kooskora H, Subbi J, Heinmaa I, Mere A, Krustok J, Stern R (2012) Ferromagnetism in rare earth doped cerium oxide bulk samples. Phys Status Solidi A 209:353–358

    Article  Google Scholar 

  • Duan LB, Chu WG, Yu J, Wang YC, Zhang LN, Liu GY, Liang JK, Rao GH (2008) Structural and magnetic properties of Zn1−x Co x O (0 < x ≤ 0.30). J Magn Magn Mater 320:1573–1581

    Article  Google Scholar 

  • Espinosa A, Sánchez N, Sánchez-Marcos J, Andrés A, Muñoz C (2011) Origin of the magnetism in undoped and Mn-doped SnO2 thin films: Sn versus oxygen vacancies. J Phys Chem C 115:24054–24060

    Article  Google Scholar 

  • Fitzgerald CB, Venkatesan M, Dorneles LS, Gunning R, Stamenov P, Coey JMD, Stampe PA, Kennedy RJ, Moreira EC, Sias US (2006) Magnetism in dilute magnetic oxide thin films based on SnO2. Phys Rev B 74(115307):1–10

    Google Scholar 

  • Freeman and Catlow (1990) A computer modeling study of defect and dopant states in SnO2. J Solid State Chem 85:65–75

    Article  Google Scholar 

  • Gouvêa D, Smith A, Bonnet JP (1996) Manganese segregation on the surface of SnO2 based powders. Eur J Solid State Inorg Chem 33:1015–1023

    Google Scholar 

  • Hays J, Punnoose A, Baldner R, Engelhard MH, Peloquin J, Reddy KM (2005) Relationship between the structural and magnetic properties of Co-doped SnO2 nanoparticles. Phys Rev B 72:075203

    Article  Google Scholar 

  • Heiman D, Shapira Y, Foner S, Khazai B, Kershaw R, Dwight K, Wold A (1984) Exchange energy, magnetization, and Raman scattering of (Cd, Mn)Se. Phys Rev B 29:5634–5640

    Article  Google Scholar 

  • Hidalgo P, Castro RHR, Coelho ACV, Gouvêa D (2005) Surface segregation and consequent SO2 sensor response in SnO2–NiO. Chem Mater 17:4149–4153

    Article  Google Scholar 

  • Jung MGK, Park H, Jang HM, Ryu S, Kim YM (2004) Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films. Appl Phys Lett 84:1338–1340

    Article  Google Scholar 

  • Karen P, Woodward PM (1998) Liquid-mix disorder in crystalline solids: ScMnO3. J Solid State Chem 141:78–88

    Article  Google Scholar 

  • Kiliç Ç, Zunger A (2002) Origins of coexistence of conductivity and transparency in SnO2. Phys Rev Lett 88(095501):1–4

    Google Scholar 

  • Larson AC, Von Dreele RB “GSAS: General Structural Analysis System” Los Alamos National Laboratory, Los Alamos NM (1994)

  • Limaye MV, Singh SB, Das R, Poddar P, Kulkarni K (2011) Room temperature ferromagnetism in undoped and Fe doped nanorods: microwave-ssisted synthesis. J Solid Stat Chem 184:391–400

    Article  Google Scholar 

  • Ohno H (1998) Making no magnetic semiconductor ferromagnetic. Science 281:951–956

    Article  Google Scholar 

  • Panigrahy B, Aslam M, Misra DS, Bahadur D (2011) Structural, optical and magnetic properties of Gd-doped ZnO nanorods by novel aqueous solution method. Int J Nanosci 10:629–633

    Article  Google Scholar 

  • Pechini M (1967) U.S. patent 3,330,697

  • Punnoose A, Hays J (2005) Possible metamagnetic origin of ferromagnetism in transition-metal-doped SnO2. J Appl Phys 97: 10D321 1–3

  • Punnoose A, Hays J, Gopal V, Shutthanandan V (2004) Room-temperature ferromagnetism in chemically synthesized Sn1−x Co x O2 powders. Appl Phys Lett 85:1559–1561

    Article  Google Scholar 

  • Qi J, Gao D, Liu J, Yang W, Wang Q, Zhou J, Yang Y, Liu J (2010) Magnetic properties of Er-doped ZnO films prepared by reactive magnetron sputtering. Appl Phys A 100:79–82

    Article  Google Scholar 

  • Rahman G, García-Suárez VM, Hong SC (2008) Vacancy-induced magnetism in SnO2: a density functional study. Phys Rev B 78:184404 1–184404 5

    Article  Google Scholar 

  • Sambasivam S, Joseph D, Jeong J, Choi B, Lim K, Kim S, Song T (2011) Antiferromagnetic interactions in Er-doped SnO2 DMS nanoparticles. J Nanopart Res 13:4623–4630

    Article  Google Scholar 

  • Sundaresan A, Bhargavi R, Rangarajan N, Siddesh U, Rao CNR (2006) Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys Rev B 74(161306):1–4

    Google Scholar 

  • Togo A, Oba F, Tanaka I, Tatsumi K (2006) First-principles calculations of native defects in tin monoxide. Phys Rev B 74(195128):1–8

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Brazilian agencies CNPq, CAPES, FAP/DF, and FAPESP (proc. 2011/50556-0) Authors want to thank Dr. E. Guimarães for her help with the XRD experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. H. Coaquira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coelho-Júnior, H., Aquino, J.C.R., Aragón, F.H. et al. Doping effects on the structural, magnetic, and hyperfine properties of Gd-doped SnO2 nanoparticles. J Nanopart Res 16, 2689 (2014). https://doi.org/10.1007/s11051-014-2689-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2689-3

Keywords

Navigation