Skip to main content
Log in

Liposome-based delivery systems for ginsenoside Rh2: in vitro and in vivo comparisons

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The Ginsenoside Rh2 (Rh2) has been shown to possess anti-cancer properties both in vitro and in vivo. However, the poor bioavailability and fast plasma elimination limit the further clinical applications of Rh2 for cancer treatments. In the present study, three types of Rh2-loaded liposomes including Rh2-loaded normal liposome (Rh2-LP), Rh2-loaded cationic liposome (Rh2-CLP), and Rh2-loaded Methoxy poly(ethylene glycol)-poly(lactide) (mPEG-PLA) liposome (Rh2-PLP) have been optimized and prepared with mean particle size of 80–125 nm. Compared to Rh2-LP, surface modifications with mPEG or octadecylamine significantly improve the physicochemical and biological properties both in vitro and in vivo. Moreover, PLP presented better tumor accumulation of the fluorescent cyanine dye, 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindotricarbocyanine iodide (DiR) in HepG2-xenografted nude mice than CLP (1.3-fold) or LP (1.6-fold) and prolong the resident time of DiR in tumor and organs (more than 24 h). The in vivo anti-cancer efficacy assessments indicate that Rh2-PLP presents the most activity on suppressing tumor growth in HepG2-xenografted mice than Rh2-LP and Rh2-CLP and without any significant toxicity. Our results indicate that mPEG-PLA modified liposome should be a potential and promising strategy to enhance the therapeutic index for anti-cancer agents.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abu-Lila A, Suzuki T, Doai Y, Ishida T, Kiwada H (2009) Oxaliplatin targeting to angiogenic vessels by PEGylated cationic liposomes suppresses the angiogenesis in a dorsal air sac mouse model. J Control Release 134:18–25

    Article  Google Scholar 

  • Abu-Lila AS, Ishida T, Kiwada H (2010) Targeting anticancer drugs to tumor vasculature using cationic liposomes. Pharm Res 27:1171–1183

    Article  Google Scholar 

  • Abu-Lila AS, Eldin NE, Ichihara M, Ishida T, Kiwada H (2012) Multiple administration of PEG-coated liposomal oxaliplatin enhances its therapeutic efficacy: a possible mechanism and the potential for clinical application. Int J Pharm 438:176–183

    Article  Google Scholar 

  • Allen TM, Cullis PR (2013) Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 65:36–48

    Article  Google Scholar 

  • Andresen TL, Jensen SS, Jørgensen K (2005) Advanced strategies in liposomal cancer therapy: problems and prospects of active and tumor specific drug release. Prog Lipid Res 44:68–97

    Article  Google Scholar 

  • Bae YH, Park K (2011) Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 153:198–205

    Article  Google Scholar 

  • Biswas S, Dodwadkar NS, Deshpande PP, Parab S, Torchilin VP (2013) Surface functionalization of doxorubicin-loaded liposomes with octa-arginine for enhanced anticancer activity. Eur J Pharm Biopharm 84:517–525

    Article  Google Scholar 

  • Cai S, Yang Q, Bagby TR, Forrest ML (2011) Lymphatic drug delivery using engineered liposomes and solid lipid nanoparticles. Adv Drug Deliv Rev 63:901–908

    Article  Google Scholar 

  • Chen X, Wang X, Wang Y, Yang L, Hu J, Xiao W, Fu A, Cai L, Li X, Ye X, Liu Y, Wu W, Shao X, Mao Y, Wei Y, Chen L (2010) Improved tumor-targeting drug delivery and therapeutic efficacy by cationic liposome modified with truncated bFGF peptide. J Control Release 45:17–25

    Article  Google Scholar 

  • Cheng CC, Yang SM, Huang CY, Chen JC, Chang WM, Hsu SL (2005) Molecular mechanisms of ginsenoside Rh2-mediated G1 growth arrest and apoptosis in human lung adenocarcinoma A549 cells. Cancer Chemother Pharmacol 55:531–540

    Article  Google Scholar 

  • Coimbra M, Isacchi B, van Bloois L, Torano JS, Ket A, Wu X, Broere F, Metselaar JM, Rijcken CJ, Storm G, Bilia R, Schiffelers RM (2011) Improving solubility and chemical stability of natural compounds for medicinal use by incorporation into liposomes. Int J Pharm 416:433–442

    Article  Google Scholar 

  • Dadashzadeh S, Mirahmadi N, Babaei MH, Vali AM (2010) Peritoneal retention of liposomes: effects of lipid composition, PEG coating and liposome charge. J Control Release 148:177–186

    Article  Google Scholar 

  • Elmowafy M, Viitala T, Ibrahim HM, Abu-Elyazid SK, Samy A, Kassem A, Yliperttula M (2013) Silymarin loaded liposomes for hepatic targeting: in vitro evaluation and HepG2 drug uptake. Eur J Pharm Sci 50:161–171

    Article  Google Scholar 

  • Gref R, Domb A, Quellec P, Blunk T, Müller RH, Verbavatz JM, Langer R (1995) The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv Drug Deliv Rev 16:215–223

    Article  Google Scholar 

  • Gu Y, Wang GJ, Sun JG, Jia YW, Wang W, Xu MJ, Lv T, Zheng YT, Sai Y (2009) Pharmacokinetic characterization of ginsenoside Rh2, an anticancer nutrient from ginseng, in rats and dogs. Food Chem Toxicol 47:2257–2268

    Article  Google Scholar 

  • Ishida T, Harashima H, Kiwada H (2002) Liposome clearance. Biosci Rep 22:197–224

    Article  Google Scholar 

  • Justo OR, Moraes AM (2005) Kanamycin incorporation in lipid vesicles prepared by ethanol injection designed for tuberculosis treatment. J Pharm Pharmacol 57:23–30

    Article  Google Scholar 

  • Kazakov S, Levon K (2006) Liposome-nanogel structures for future pharmaceutical applications. Curr Pharm Des 12:4713–4728

    Article  Google Scholar 

  • Kim HK, Davaa E, Myung CS, Park JS (2010) Enhanced siRNA delivery using cationic liposomes with new polyarginine-conjugated PEG-lipid. Int J Pharm 392:141–147

    Article  Google Scholar 

  • Kim CE, Lim SK, Kim JS (2012) In vivo antitumor effect of cromolyn in PEGylated liposomes for pancreatic cancer. J Control Release 157:190–195

    Article  Google Scholar 

  • Kolate A, Baradia D, Patil S, Vhora I, Kore G, Misra A (2014) PEG-a versatile conjugating ligand for drugs and drug delivery systems. J Control Release 192:67–81

    Article  Google Scholar 

  • Langner M, Kral TE (1999) Liposome-based drug delivery systems. Pol J Pharmacol 51:211–222

    Google Scholar 

  • Li SD, Huang L (2010) Stealth nanoparticles: high density but sheddable PEG is a key for tumor targeting. J Control Release 145:178–181

    Article  Google Scholar 

  • Li X, Ding L, Xu Y, Wang Y, Ping Q (2009) Targeted delivery of doxorubicin using stealth liposomes modified with transferrin. Int J Pharm 373:116–123

    Article  Google Scholar 

  • Maeda H (2012) Macromolecular therapeutics in cancer treatment: the EPR effect and beyond. J Control Release 164:138–144

    Article  Google Scholar 

  • Maeda H, Sawa T, Konno T (2001) Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release 74:47–61

    Article  Google Scholar 

  • Maeda H, Bharate GY, Daruwalla J (2009) Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm 71:409–419

    Article  Google Scholar 

  • Mei L, Fu L, Shi K, Zhang Q, Liu Y, Tang J, Gao H, Zhang Z, He Q (2014) Increased tumor targeted delivery using a multistage liposome system functionalized with RGD, TAT and cleavable PEG. Int J Pharm 468:26–38

    Article  Google Scholar 

  • Mirahmadi N, Babaei MH, Vali AM, Dadashzadeh S (2010) Effect of liposome size on peritoneal retention and organ distribution after intraperitoneal injection in mice. Int J Pharm 383:7–13

    Article  Google Scholar 

  • Mohammed AR, Bramwell VW, Kirby DJ, McNeil SE, Perrie Y (2010) Increased potential of a cationic liposome-based delivery system: enhancing stability and sustained immunological activity in pre-clinical development. Eur J Pharm Biopharm 76:404–412

    Article  Google Scholar 

  • Mu CF, Balakrishnan P, Cui FD, Yin YM, Lee YB, Choi HG, Yong CS, Chung SJ, Shim CK, Kim DD (2010) The effects of mixed MPEG–PLA/Pluronic® copolymer micelles on the bioavailability and multidrug resistance of docetaxel. Biomaterials 31:2371–2379

    Article  Google Scholar 

  • Naicker K, Ariatti M, Singh M (2014) PEGylated galactosylated cationic liposomes for hepatocytic gene delivery. Colloids Surf B 122:482–490

    Article  Google Scholar 

  • Nakamura K, Yamashita K, Itoh Y, Yoshino K, Nozawa S, Kasukawa H (2012) Comparative studies of polyethylene glycol-modified liposomes prepared using different PEG-modification methods. Biochim Biophys Acta 1818:2801–2807

    Article  Google Scholar 

  • Oku N, Namba Y (1994) Long-circulating liposomes. Crit Rev Ther Drug Carrier Syst 11:231–270

    Google Scholar 

  • Paliwal SR, Paliwal R, Agrawal GP, Vyas SP (2011) Liposomal nanomedicine for breast cancer therapy. Nanomedicine 6:1085–1100

    Article  Google Scholar 

  • Qian T, Cai Z, Wong RN, Jiang ZH (2005) Liquid chromatography/mass spectrometric analysis of rat samples for in vivo metabolism and pharmacokinetic studies of ginsenoside Rh2. Rapid Commun Mass Spectrom 19:3549–3554

    Article  Google Scholar 

  • Resina S, Prevot P, Thierry AR (2009) Physico-chemical characteristics of lipoplexes influence cell uptake mechanism and transfection efficacy. PLoS One 4:6058–6069

    Article  Google Scholar 

  • Saengkrit N, Saesoo S, Srinuanchai W, Phunpee S, Ruktanonchai UR (2014) Influence of curcumin-loaded cationic liposome on anticancer activity for cervical cancer therapy. Colloids Surf B 114:349–356

    Article  Google Scholar 

  • She ZG, Liu XY, Kotamraju VR, Ruoslahti E (2014) Clot-targeted micellar formulation improves anticoagulation efficacy of bivalirudin. ACS Nano 8:10139–10149

    Article  Google Scholar 

  • Shehata T, Ogawara K, Higaki K, Kimura T (2008) Prolongation of residence time of liposome by surface-modification with mixture of hydrophilic polymers. Int J Pharm 359:272–279

    Article  Google Scholar 

  • Sun S, Wang CZ, Tong R, Li XL, Fishbein A, Wang Q, He TC, Du W, Yuan CS (2010) Effects of steaming the root of Panax notoginseng on chemical composition and anticancer activities. Food Chem 118:307–314

    Article  Google Scholar 

  • Szebeni J, Muggia F, Gabizon A, Barenholz Y (2011) Activation of complement by therapeutic liposomes and other lipid excipient-based therapeutic products: prediction and prevention. Adv Drug Deliv Rev 63:1020–1030

    Article  Google Scholar 

  • Tagami T, Suzuki T, Matsunaga M, Nakamura K, Moriyoshi N, Ishida T, Kiwada H (2012) Anti-angiogenic therapy via cationic liposome-mediated systemic siRNA delivery. Int J Pharm 422:280–289

    Article  Google Scholar 

  • van den Hoven JM, Nemes R, Metselaar JM, Nuijen B, Beijnen JH, Storm G, Szebeni J (2013) Complement activation by PEGylated liposomes containing prednisolone. Eur J Pharm Sci 49:265–271

    Article  Google Scholar 

  • Wang H, Zhao P, Liang X, Gong X, Song T, Niu R, Chang J (2010) Folate-PEG coated cationic modified chitosan–cholesterol liposomes for tumor-targeted drug delivery. Biomaterials 3:4129–4138

    Article  Google Scholar 

  • Wen Z, Yan Z, Hu K, Pang Z, Cheng X, Guo L, Zhang Q, Jiang X, Fang L, Lai R (2011) Odorranalectin-conjugated nanoparticles: preparation, brain delivery and pharmacodynamic study on Parkinson’s disease following intranasal administration. J Control Release 151:131–138

    Article  Google Scholar 

  • Yan Z, Wang F, Wen Z, Zhan C, Feng L, Liu Y, Wei X, Xie C, Lu W (2012) LyP-1-conjugated PEGylated liposomes: a carrier system for targeted therapy of lymphatic metastatic tumor. J Control Release 157:118–125

    Article  Google Scholar 

  • Yang T, Cui FD, Choi MK, Cho JW, Chung SJ, Shim CK, Kim DD (2007) Enhanced solubility and stability of PEGylated liposomal paclitaxel: in vitro and in vivo evaluation. Int J Pharm 338:317–326

    Article  Google Scholar 

  • Yang ZZ, Li JQ, Wang ZZ, Dong DW, Qi XR (2014) Tumor-targeting dual peptides-modified cationic liposomes for delivery of siRNA and docetaxel to gliomas. Biomaterials 35:5226–5239

    Article  Google Scholar 

  • Yoshino K, Nakamura K, Terajima Y, Kurita A, Matsuzaki T, Yamashita K, Isozaki M, Kasukawa H (2012) Comparative studies of irinotecan-loaded polyethylene glycol-modified liposomes prepared using different PEG-modification methods. Biochim Biophys Acta 1818:2901–2907

    Article  Google Scholar 

  • Zalba S, Navarro I, Trocóniz IF, Tros de Ilarduya C, Garrido MJ (2012) Application of different methods to formulate PEG-liposomes of oxaliplatin: evaluation vitro and in vivo. Eur J Pharm Biopharm 81:273–280

    Article  Google Scholar 

  • Zhang J, Zhou F, Wu X, Gu Y, Ai H, Zheng Y, Li Y, Zhang X, Hao G, Sun J, Peng Y, Wang G (2010) 20(S)-ginsenoside Rh2 noncompetitively inhibits P-glycoprotein in vitro and in vivo: a case for herb-drug interactions. Drug Metab Dispos 38:2179–2187

    Article  Google Scholar 

  • Zhao Y, Li J, Yu H, Wang G, Liu W (2012) Synthesis and characterization of a novel polydepsipeptide contained tri-block copolymer (mPEG-PLLA-PMMD) as self-assembly micelle delivery system for paclitaxel. Int J Pharm 430:282–291

    Article  Google Scholar 

Download references

Acknowledgments

This work was kindly supported by the Talent Summit of Six Major Industry of Jiangsu Province (7th) and Technology of the People’s Republic of China (No. 2009ZX09310-004), the New Drug Innovation Project from the Ministry of Science and Central University Basal Research Fund Project (NO. JKY2011059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Li.

Additional information

L. Xu and H. Yu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Yu, H., Yin, S. et al. Liposome-based delivery systems for ginsenoside Rh2: in vitro and in vivo comparisons. J Nanopart Res 17, 415 (2015). https://doi.org/10.1007/s11051-015-3214-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3214-z

Keywords

Navigation