Skip to main content

Advertisement

Log in

Effect of Variable Doses of Zinc Oxide Nanoparticles on Male Albino Mice Behavior

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Zinc oxide nanoparticles (ZnO NPs) have diverse utility these days ranging from being part of nanosensors to be ingredient of cosmetics. Present study was designed to report the effect of variable doses of ZnO NPs on selected aspects of male albino mice behavior. Nano particles were synthesized by sol-gel auto-combustion method (Data not shown here). 10 week old male albino mice were divided into four experimental groups; group A, B and C were orally supplemented with 50 (low dose), 300 (medium dose) and 600 mg/ml solvent/kg body weight (high dose) of ZnO NPs for 4 days. Group D (control) orally received 0.2 M sodium phosphate buffer (solvent for ZnO NPs) for the same duration. A series of neurological tests (Rota rod, open field, novel object and light–dark box test) were conducted in all groups and performance was compared between ZnO NPs treated and control group. Muscular functioning during rota rod test was significantly improved in all ZnO NPs treated mice as compared to control group. While no significant differences in open field, novel object and light–dark box test performance were observed when data from studied parameters of specific ZnO NPs treatment were compared with the control group indicating that applied doses of ZnO NPs did not affect the exploratory, anxiolytic behavior and object recognition capability of adult male albino mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sarkar S, Makhal A, Baruah S, Mahmood MA, Dutta J, Pal SK (2012) Nanoparticle-sensitized photodegradation of bilirubin and potential therapeutic application. J Phys Chem C 116:9608–9615

    Article  CAS  Google Scholar 

  2. Radzimska AK, Jesionowski T (2014) Zinc oxide—from synthesis to application: a review. Materials 7:2833–2888

    Article  Google Scholar 

  3. Zhang H, Ji Z, Xia T, Meng H, Low-Kam C, Liu R, Pokhrel S, Lin S, Wang X, Liao Y-P (2012) Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 6:4349–4368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chang Y-N, Zhang M, Xia L, Zhang J, Xing G (2012) The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials 5:2850–2871

    Article  CAS  Google Scholar 

  5. Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87:1181–1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Khan YA, Singh BR, Ullah R, Shoeb M, Naqvi AH, Abidi SM (2015) Anthelmintic effect of biocompatible zinc oxide nanoparticles (ZnO NPs) on gigantocotyle explanatum, a neglected parasite of Indian water buffalo. PloS One 10:e0133086

    Article  PubMed  PubMed Central  Google Scholar 

  7. Silvestro RAD (2004) Handbook of minerals as nutritional supplements, CRC Press

  8. Hennigar SR, Kelleher SL (2012) Zinc networks: the cell-specific compartmentalization of zinc for specialized functions. Biol Chem 393(7):565–578

    Article  CAS  PubMed  Google Scholar 

  9. Hsieh CW, Tu ME, Wu YH (2010) Allergic contact dermatitis induced by zinc pyrithione in shampoo: a case report. Dermatologica Sinica 28:163–166

    Article  Google Scholar 

  10. Liu H, Yang D, Yang H, Zhang H, Zhang W, Fang Y, Liu Z, Tian L, Lin B, Yan J (2013) Comparative study of respiratory tract immune toxicity induced by three sterilization nanoparticles: silver, zinc oxide and titanium oxide. J Hazard Mat 248:478–486

    Article  Google Scholar 

  11. Mirhosseini M, Firouzabadi F (2012) Antibacterial activity of zinc oxide nanoparticle suspensions on food-borne pathogens. Int J Dairy Technol 65:1–5

    Article  Google Scholar 

  12. Mason P (2006) Physiological and medicinal zinc. Pharm J 276:271–274

    Google Scholar 

  13. Vandebriel RJ, De Jong WH (2012) A review of mammalian toxicity of ZnO nanoparticles. Nanotech Sci App 5:61–71

    Article  CAS  Google Scholar 

  14. Tian L, Bencheng L, Lei W, Kang L, Huanliang L, Jun Y, Xiohua L (2015) Neurotoxicity induced by zinc oxide nanoparticles: age-related differences and interaction. Scientific Reports 5:16117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao J, Xu L, Zhang T, Ren G, Yang Z (2009) Influences of nanoparticle zinc oxide on acutely isolated rat hippocampal CA3 pyramidal neurons. Neurotoxicology 30(2):220–230

    Article  CAS  PubMed  Google Scholar 

  16. Allahyar R, Akbar A, Iqbal F (2016) Effect of creatine monohydrate supplementation on learning, memory and neuromuscular coordination in female albino mice. Acta Neuropsychiatrica. doi:10.1017/neu.2016.28

    PubMed  Google Scholar 

  17. Iqbal S, Ali M, Iqbal F (2015) Long term creatine monohydrate supplementation, following neonatal hypoxic ischemic insult, improves neuromuscular coordination and spatial learning in male albino mouse. Brain Res 1603:76–83

    Article  CAS  PubMed  Google Scholar 

  18. Zhang R, Xue G, Wang S, Zhang L, Shi C, Xie X (2012) Novel object recognition as a facile behavior test for evaluating drug effects in AβPP/PS1 Alzheimer’s disease mouse model. J Alzheimers Dis 31:801–812

    CAS  PubMed  Google Scholar 

  19. Zahra K, Khan M, Iqbal F (2015) Oral supplementation of Ocimum basilicum has the potential to improves the locomotory, exploratory, anxiolytic behavior and learning in adult male albino mice. Neurol Sci 36:73–78

    Article  CAS  PubMed  Google Scholar 

  20. Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–2134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vandebriel RJ, De Jong WH (2012) A review of mammalian toxicity of ZnO nanoparticles. Nanotech Sci App 5:61

    Article  CAS  Google Scholar 

  22. Zahra J, Iqbal S, Latif M, Ali M, Shad MA, Tabish TH, Ashiq MN, Iqbal F (2016) A note on the Biocompatibility of Zinc oxide Nanoparticles in male albino mice. Nanosci Nanotech Lett (in press)

  23. Tabish MT, Ashiq MN, Ullah MA, Iqbal S, Latif M, Ehsan MF, Iqbal F (2016) Biocompatibility of cobalt iron oxide magnetic nanoparticles in male rabbit. Korean J Chem Eng 33(7):2222–2227

    Article  CAS  Google Scholar 

  24. Deng X, Luan Q, Chen W, Wang Y, Wu M, Zhang H, Jiao Z (2009) Nanosized zinc oxide particles induce neural stem cell apoptosis. Nanotechnology 20:115101

    Article  PubMed  Google Scholar 

  25. Xie Y, Wang Y, Zhang T, Ren G, Yang Z (2012) Effects of nanoparticle zinc oxide on spatial cognition and synaptic plasticity in mice with depressive-like behaviors. J Biomed Sci 19:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang B, Feng W, Wang M, Wang T, Gu Y, Zhu M, Ouyang H, Shi J, Zhang F, Zhao Y (2008) Acute toxicological impact of nano-and submicro-scaled zinc oxide powder on healthy adult mice. J Nanopart Res 10:263–276

    Article  CAS  Google Scholar 

  27. Amara S, Slama IB, Omri K, Ghoul JE, Mir LE, Rhouma KB, Abdelmelek H, Sakly M (2015) Effects of nanoparticle zinc oxide on emotional behavior and trace elements homeostasis in rat brain. Toxicol Ind Health 31:1202–1209

    Article  CAS  PubMed  Google Scholar 

  28. Dadong H, Yutao T, Tao Z, Guogang E, Zhuo Y (2011) Nano-zinc oxide damages spatial cognition capability via over-enhanced long-term potentiation in hippocampus of Wistar rats. Int J Nanomed 6:1453–1461

    Google Scholar 

  29. Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A (2007) Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Applied physics letters 90:213902

    Article  PubMed Central  Google Scholar 

  30. Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490

    Article  CAS  PubMed  Google Scholar 

  31. Heinlaan M, Ivask A, Blinova I, Dubourguier H-C, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO 2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:1308–1316

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Naeem Ashiq or Furhan Iqbal.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest of any sort with anyone.

Additional information

Javeria Zahra and Shahid Iqbal have contributed equally to the manuscript.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahra, J., Iqbal, S., Zahra, K. et al. Effect of Variable Doses of Zinc Oxide Nanoparticles on Male Albino Mice Behavior. Neurochem Res 42, 439–445 (2017). https://doi.org/10.1007/s11064-016-2090-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-2090-y

Keywords

Navigation