Skip to main content
Log in

Aerobic Glycolysis in the Brain: Warburg and Crabtree Contra Pasteur

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Information processing is onerous. Curiously, active brain tissue does not fully oxidize glucose and instead generates a local surplus of lactate, a phenomenon termed aerobic glycolysis. Why engage in inefficient ATP production by glycolysis when energy demand is highest and oxygen is plentiful? Aerobic glycolysis is associated to classic biochemical effects known by the names of Pasteur, Warburg and Crabtree. Here we discuss these three interdependent phenomena in brain cells, in light of high-resolution data of neuronal and astrocytic metabolism in culture, tissue slices and in vivo, acquired with genetically-encoded fluorescent sensors. These sensors are synthetic proteins that can be targeted to specific cell types and subcellular compartments, which change their fluorescence in response to variations in metabolite concentration. A major site of acute aerobic glycolysis is the astrocyte. In this cell, a Crabtree effect triggered by K+ coincides with a Warburg effect mediated by NO, superimposed on a slower longer-lasting Warburg effect caused by glutamate and possibly by NH4+. The compounded outcome is that more fuel (lactate) and more oxygen are made available to neurons, on demand. Meanwhile neurons consume both glucose and lactate, maintaining a strict balance between glycolysis and respiration, commanded by the Na+ pump. We conclude that activity-dependent Warburg and Crabtree effects in brain tissue, and the resulting aerobic glycolysis, do not reflect inefficient energy generation but the marshalling of astrocytes for the purpose of neuronal ATP generation. It remains to be seen whether neurons contribute to aerobic glycolysis under physiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hinkle PC (2005) P/O ratios of mitochondrial oxidative phosphorylation. Biochim Biophys Acta 1706:1–11

    CAS  PubMed  Google Scholar 

  2. Fox PT, Raichle ME, Mintun MA, Dence C (1988) Nonoxidative glucose consumption during focal physiologic neural activity. Science 241:462–464

    CAS  PubMed  Google Scholar 

  3. Prichard J, Rothman D, Novotny E, Petroff O, Kuwabara T, Avison M, Howseman A, Hanstock C, Shulman R (1991) Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation. Proc Natl Acad Sci USA 88:5829–5831

    CAS  PubMed  Google Scholar 

  4. Hu Y, Wilson GS (1997) A temporary local energy pool coupled to neuronal activity: fluctuations of extracellular lactate levels in rat brain monitored with rapid-response enzyme-based sensor. J Neurochem 69:1484–1490

    CAS  PubMed  Google Scholar 

  5. Warburg O (1925) The metabolism of carcinoma cells. J Cancer Res 9:148–163

    CAS  Google Scholar 

  6. Goyal MS, Hawrylycz M, Miller JA, Snyder AZ, Raichle ME (2014) Aerobic glycolysis in the human brain is associated with development and neotenous gene expression. Cell Metab 19:49–57

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Pasteur L (1861) Expériences et vues nouvelles sur la nature des fermentations. Comptes Rendus 52:1260–1264

    Google Scholar 

  9. Warburg O (1926) Über die wirkung von blausaureäthylester (Athylcarbylamin) auf die pasteursche reaktion. Biochemische Zeitschrift 172:432–441

    CAS  Google Scholar 

  10. Warburg O, Posener K, Negelein E (1924) Über den stoffwechsel der carcinomzelle. Naturwissenschaften 12:1131–1137

    CAS  Google Scholar 

  11. Racker E (1972) Bioenergetics and the problem of tumor growth. Am Sci 60:56–63

    CAS  PubMed  Google Scholar 

  12. Liberti MV, Locasale JW (2016) The warburg effect: how does it benefit cancer cells? Trends Biochem. Sci. 41(3):211–218

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Crabtree HG (1929) Observations on the carbohydrate metabolism of tumours. Biochem J 23:536–545

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Rosenthal O, Bowie MA, Wagoner G (1940) On the interdependence of respiration and glycolysis. Science 92:382–383

    CAS  PubMed  Google Scholar 

  15. Diaz-Ruiz R, Averet N, Araiza D, Pinson B, Uribe-Carvajal S, Devin A, Rigoulet M (2008) Mitochondrial oxidative phosphorylation is regulated by fructose 1,6-bisphosphate. A possible role in crabtree effect induction? J Biol Chem 283:26948–26955

    CAS  PubMed  Google Scholar 

  16. Thomson JM, Gaucher EA, Burgan MF, De Kee DW, Li T, Aris JP, Benner SA (2005) Resurrecting ancestral alcohol dehydrogenases from yeast. Nat Genet 37:630–635

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hagman A, Sall T, Compagno C, Piskur J (2013) Yeast "make-accumulate-consume" life strategy evolved as a multi-step process that predates the whole genome duplication. PLoS ONE 8:e68734

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Fernandez-Moncada I, Ruminot I, Robles-Maldonado D, Alegria K, Deitmer JW, Barros LF (2018) Neuronal control of astrocytic respiration through a variant of the Crabtree effect. Proc Natl Acad Sci USA 115:1623–1628

    CAS  PubMed  Google Scholar 

  19. Harris JJ, Jolivet R, Attwell D (2012) Synaptic energy use and supply. Neuron 75:762–777

    CAS  PubMed  Google Scholar 

  20. Bouzier-Sore AK, Pellerin L (2013) Unraveling the complex metabolic nature of astrocytes. Front Cell Neurosci 7:179

    PubMed  PubMed Central  Google Scholar 

  21. Stobart JL, Anderson CM (2013) Multifunctional role of astrocytes as gatekeepers of neuronal energy supply. Front Cell Neurosci 7:38

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Fernandez-Fernandez S, Almeida A, Bolanos JP (2012) Antioxidant and bioenergetic coupling between neurons and astrocytes. Biochem J 443:3–11

    CAS  PubMed  Google Scholar 

  23. Barros LF, Weber B (2018) CrossTalk proposal: an important astrocyte-to-neuron lactate shuttle couples neuronal activity to glucose utilisation in the brain. J Physiol 596:347–350

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Magistretti PJ, Allaman I (2018) Lactate in the brain: from metabolic end-product to signalling molecule. Nat Rev Neurosci 19:235–249

    CAS  PubMed  Google Scholar 

  25. Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91:10625–10629

    CAS  PubMed  Google Scholar 

  26. Volkenhoff A, Weiler A, Letzel M, Stehling M, Klambt C, Schirmeier S (2015) Glial glycolysis is essential for neuronal survival in drosophila. Cell Metab 22:437–447

    CAS  PubMed  Google Scholar 

  27. Gonzalez-Gutierrez A, Ibacache A, Esparza A, Barros LF, Sierralta J (2019) Neuronal lactate levels depend on glia-derived lactate during high brain activity in Drosophila. Glia. https://doi.org/10.1002/glia.23772

    Article  PubMed  Google Scholar 

  28. Yellen G (2018) Fueling thought: Management of glycolysis and oxidative phosphorylation in neuronal metabolism. J Cell Biol 217:2235–2246

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bak LK, Walls AB (2018) Lack of evidence supporting an astrocyte-to-neuron lactate shuttle coupling neuronal activity to glucose utilisation in the brain. J Physiol 596:351–353

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Dienel GA (2019) Brain glucose metabolism: integration of energetics with function. Physiol Rev 99:949–1045

    CAS  PubMed  Google Scholar 

  31. Porras OH, Loaiza A, Barros LF (2004) Glutamate mediates acute glucose transport inhibition in hippocampal neurons. J Neurosci 24:9669–9673

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Tescarollo F, Covolan L, Pellerin L (2014) Glutamate reduces glucose utilization while concomitantly enhancing AQP9 and MCT2 expression in cultured rat hippocampal neurons. Front Neurosci 8:246

    PubMed  PubMed Central  Google Scholar 

  33. Bak LK, Walls AB, Schousboe A, Ring A, Sonnewald U, Waagepetersen HS (2009) Neuronal glucose but not lactate utilization is positively correlated with NMDA-induced neurotransmission and fluctuations in cytosolic Ca2+ levels. J Neurochem 109:87–93

    CAS  PubMed  Google Scholar 

  34. Surin AM, Gorbacheva LR, Savinkova IG, Sharipov RR, Khodorov BI, Pinelis VG (2014) Study on ATP concentration changes in cytosol of individual cultured neurons during glutamate-induced deregulation of calcium homeostasis. Biochemistry 79(2):146–157

    CAS  PubMed  Google Scholar 

  35. Lange SC, Winkler U, Andresen L, Byhro M, Waagepetersen HS, Hirrlinger J, Bak LK (2015) Dynamic changes in cytosolic ATP levels in cultured glutamatergic neurons during NMDA-induced synaptic activity supported by glucose or lactate. Neurochem Res 40:2517–2526

    CAS  PubMed  Google Scholar 

  36. Baeza-Lehnert F, Saab AS, Gutierrez R, Larenas V, Diaz E, Horn M, Vargas M, Hosli L, Stobart J, Hirrlinger J, Weber B, Barros LF (2019) Non-canonical control of neuronal energy status by the Na(+) pump. Cell Metab 29:668–680

    CAS  PubMed  Google Scholar 

  37. Hochachka PW, Buck LT, Doll CJ, Land SC (1996) Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc Natl Acad Sci USA 93:9493–9498

    CAS  PubMed  Google Scholar 

  38. Diaz-Garcia CM, Mongeon R, Lahmann C, Koveal D, Zucker H, Yellen G (2017) Neuronal stimulation triggers neuronal glycolysis and not lactate uptake. Cell Metab 26:361–374

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Newman LA, Korol DL, Gold PE (2011) Lactate produced by glycogenolysis in astrocytes regulates memory processing. PLoS ONE 6:e28427

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Albensi BC, Oliver DR, Toupin J, Odero G (2007) Electrical stimulation protocols for hippocampal synaptic plasticity and neuronal hyper-excitability: are they effective or relevant? Exp Neurol 204:1–13

    PubMed  Google Scholar 

  41. Rodriguez-Rodriguez P, Fernandez E, Almeida A, Bolanos JP (2012) Excitotoxic stimulus stabilizes PFKFB3 causing pentose-phosphate pathway to glycolysis switch and neurodegeneration. Cell Death Differ 19:1582–1589

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Herrero-Mendez A, Almeida A, Fernandez E, Maestre C, Moncada S, Bolanos JP (2009) The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat Cell Biol 11:747–752

    CAS  PubMed  Google Scholar 

  43. Hasel P, Dando O, Jiwaji Z, Baxter P, Todd AC, Heron S, Markus NM, McQueen J, Hampton DW, Torvell M, Tiwari SS, McKay S, Eraso-Pichot A, Zorzano A, Masgrau R, Galea E, Chandran S, Wyllie DJA, Simpson TI, Hardingham GE (2017) Neurons and neuronal activity control gene expression in astrocytes to regulate their development and metabolism. Nat Commun 8:15132

    PubMed  PubMed Central  Google Scholar 

  44. Sotelo-Hitschfeld T, Niemeyer MI, Machler P, Ruminot I, Lerchundi R, Wyss MT, Stobart J, Fernandez-Moncada I, Valdebenito R, Garrido-Gerter P, Contreras-Baeza Y, Schneider BL, Aebischer P, Lengacher S, San MA, Le DJ, Bonvento G, Magistretti PJ, Sepulveda FV, Weber B, Barros LF (2015) Channel-mediated lactate release by k+-stimulated astrocytes. J Neurosci 35:4168–4178

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Karagiannis A, Sylantyev S, Hadjihambi A, Hosford PS, Kasparov S, Gourine AV (2016) Hemichannel-mediated release of lactate. J Cereb Blood Flow Metab 36:1202–1211

    CAS  PubMed  Google Scholar 

  46. Bittner CX, Valdebenito R, Ruminot I, Loaiza A, Larenas V, Sotelo-Hitschfeld T, Moldenhauer H, San Martín A, Gutiérrez R, Zambrano M, Barros LF (2011) Fast and reversible stimulation of astrocytic glycolysis by K+ and a delayed and persistent effect of glutamate. J Neurosci 31:4709–4713

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Loaiza A, Porras OH, Barros LF (2003) Glutamate triggers rapid glucose transport stimulation in astrocytes as evidenced by real-time confocal microscopy. J Neurosci 23:7337–7342

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Porras OH, Ruminot I, Loaiza A, Barros LF (2008) Na(+)-Ca(2+) cosignaling in the stimulation of the glucose transporter GLUT1 in cultured astrocytes. Glia 56:59–68

    PubMed  Google Scholar 

  49. McKenna MC, Stridh MH, McNair LF, Sonnewald U, Waagepetersen HS, Schousboe A (2016) Glutamate oxidation in astrocytes: roles of glutamate dehydrogenase and aminotransferases. J Neurosci Res 94:1561–1571

    CAS  PubMed  Google Scholar 

  50. Rimmele TS, de Castro AH, Wellbourne-Wood J, Lengacher S, Chatton JY (2018) Extracellular potassium and glutamate interact to modulate mitochondria in astrocytes. ACS Chem Neurosci 9:2009–2015

    CAS  PubMed  Google Scholar 

  51. Juaristi I, Llorente-Folch I, Satrustegui J, del Arco A (2019) Extracellular ATP and glutamate drive pyruvate production and energy demand to regulate mitochondrial respiration in astrocytes. Glia 67(4):759–774

    PubMed  Google Scholar 

  52. Saab AS, Tzvetavona ID, Trevisiol A, Baltan S, Dibaj P, Kusch K, Mobius W, Goetze B, Jahn HM, Huang W, Steffens H, Schomburg ED, Perez-Samartin A, Perez-Cerda F, Bakhtiari D, Matute C, Lowel S, Griesinger C, Hirrlinger J, Kirchhoff F, Nave KA (2016) Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism. Neuron 91:119–132

    CAS  PubMed  Google Scholar 

  53. Magistretti PJ, Chatton JY (2005) Relationship between l-glutamate-regulated intracellular Na+ dynamics and ATP hydrolysis in astrocytes. J Neural Transm 112:77–85

    CAS  PubMed  Google Scholar 

  54. Ding F, O'Donnell J, Xu Q, Kang N, Goldman N, Nedergaard M (2016) Changes in the composition of brain interstitial ions control the sleep-wake cycle. Science 352:550–555

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Heinemann U, Schaible HG, Schmidt RF (1990) Changes in extracellular potassium concentration in cat spinal cord in response to innocuous and noxious stimulation of legs with healthy and inflamed knee joints. Exp Brain Res 79:283–292

    CAS  PubMed  Google Scholar 

  56. Frohlich F, Bazhenov M, Iragui-Madoz V, Sejnowski TJ (2008) Potassium dynamics in the epileptic cortex: new insights on an old topic. Neurosci 14:422–433

    CAS  Google Scholar 

  57. Peng L, Zhang X, Hertz L (1994) High extracellular potassium concentrations stimulate oxidative metabolism in a glutamatergic neuronal culture and glycolysis in cultured astrocytes but have no stimulatory effect in a GABAergic neuronal culture. Brain Res 663:168–172

    CAS  PubMed  Google Scholar 

  58. Takahashi S, Driscoll BF, Law MJ, Sokoloff L (1995) Role of sodium and potassium ions in regulation of glucose metabolism in cultured astroglia. Proc Natl Acad Sci USA 92:4616–4620

    CAS  PubMed  Google Scholar 

  59. Sokoloff L, Takahashi S, Gotoh J, Driscoll BF, Law MJ (1996) Contribution of astroglia to functionally activated energy metabolism. Dev Neurosci 18:344–352

    CAS  PubMed  Google Scholar 

  60. Ruminot I, Gutiérrez R, Peña-Munzenmeyer G, Añazco C, Sotelo-Hitschfeld T, Lerchundi R, Niemeyer MI, Shull GE, Barros LF (2011) NBCe1 mediates the acute stimulation of astrocytic glycolysis by extracellular K+. J Neurosci 31:14264–14271

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ruminot I, Schmalzle J, Leyton B, Barros LF, Deitmer JW (2017) Tight coupling of astrocyte energy metabolism to synaptic activity revealed by genetically encoded FRET nanosensors in hippocampal tissue. J Cereb Blood Flow Metab 39:513–523

    PubMed  PubMed Central  Google Scholar 

  62. Kohler S, Winkler U, Sicker M, Hirrlinger J (2018) NBCe1 mediates the regulation of the NADH/NAD(+) redox state in cortical astrocytes by neuronal signals. Glia 66:2233–2245

    PubMed  Google Scholar 

  63. Choi HB, Gordon GR, Zhou N, Tai C, Rungta RL, Martinez J, Milner TA, Ryu JK, McLarnon JG, Tresguerres M, Levin LR, Buck J, MacVicar BA (2012) Metabolic communication between astrocytes and neurons via bicarbonate-responsive soluble adenylyl cyclase. Neuron 75:1094–1104

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Sotelo-Hitschfeld T, Fernández-Moncada I, Barros LF (2012) Acute feedback control of astrocytic glycolysis by lactate. Glia 60:674–680

    CAS  PubMed  Google Scholar 

  65. Garthwaite J, Boulton CL (1995) Nitric oxide signaling in the central nervous system. Annu Rev Physiol 57:683–706

    CAS  PubMed  Google Scholar 

  66. Almeida A, Almeida J, Bolanos JP, Moncada S (2001) Different responses of astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in astrocyte protection. Proc Natl Acad Sci USA 98:15294–15299

    CAS  PubMed  Google Scholar 

  67. San Martín A, Arce-Molina R, Galaz A, Perez-Guerra G, Barros LF (2017) Nanomolar nitric oxide concentrations quickly and reversibly modulate astrocytic energy metabolism. J Biol Chem 292:9432–9438

    PubMed  PubMed Central  Google Scholar 

  68. Garthwaite J (2016) From synaptically localized to volume transmission by nitric oxide. J Physiol 594:9–18

    CAS  PubMed  Google Scholar 

  69. Garthwaite G, Bartus K, Malcolm D, Goodwin D, Kollb-Sielecka M, Dooldeniya C, Garthwaite J (2006) Signaling from blood vessels to CNS axons through nitric oxide. J Neurosci 26:7730–7740

    CAS  PubMed  PubMed Central  Google Scholar 

  70. LeMaistre JL, Sanders SA, Stobart MJ, Lu L, Knox JD, Anderson HD, Anderson CM (2012) Coactivation of NMDA receptors by glutamate and d-serine induces dilation of isolated middle cerebral arteries. J Cereb Blood Flow Metab 32:537–547

    CAS  PubMed  Google Scholar 

  71. Stobart JL, Lu L, Anderson HD, Mori H, Anderson CM (2013) Astrocyte-induced cortical vasodilation is mediated by d-serine and endothelial nitric oxide synthase. Proc Natl Acad Sci USA 110:3149–3154

    CAS  PubMed  Google Scholar 

  72. Schousboe A, Westergaard N, Waagepetersen HS, Larsson OM, Bakken IJ, Sonnewald U (1997) Trafficking between glia and neurons of TCA cycle intermediates and related metabolites. Glia 21:99–105

    CAS  PubMed  Google Scholar 

  73. Rothman DL, De Feyter HM, Maciejewski PK, Behar KL (2012) Is there in vivo evidence for amino acid shuttles carrying ammonia from neurons to astrocytes? Neurochem Res 37:2597–2612

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Tashiro S (1922) Studies on alkaligenesis in tissues. Am J Physiol 60:519–543

    CAS  Google Scholar 

  75. Richter D, Dawson RM (1948) The ammonia and glutamine content of the brain. J Biol Chem 176:1199–1210

    CAS  PubMed  Google Scholar 

  76. Tsukada Y, Takagaki G, Sugimoto S, Hirano S (1958) Changes in the ammonia and glutamine content of the rat brain induced by electric shock. J Neurochem 2:295–303

    CAS  PubMed  Google Scholar 

  77. Coles JA, Marcaggi P, Vega C, Cotillon N (1996) Effects of photoreceptor metabolism on interstitial and glial cell pH in bee retina: evidence of a role for NH4+. J Physiol 495(Pt 2):305–318

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kelly T, Rose CR (2010) Ammonium influx pathways into astrocytes and neurones of hippocampal slices. J Neurochem 115:1123–1136

    CAS  PubMed  Google Scholar 

  79. Thrane VR, Thrane AS, Wang F, Cotrina ML, Smith NA, Chen M, Xu Q, Kang N, Fujita T, Nagelhus EA, Nedergaard M (2013) Ammonia triggers neuronal disinhibition and seizures by impairing astrocyte potassium buffering. Nat Med 19(12):1643–1648

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Provent P, Kickler N, Barbier EL, Bergerot A, Farion R, Goury S, Marcaggi P, Segebarth C, Coles JA (2007) The ammonium-induced increase in rat brain lactate concentration is rapid and reversible and is compatible with trafficking and signaling roles for ammonium. J Cereb Blood Flow Metab. 27:1830–1840

    CAS  PubMed  Google Scholar 

  81. Lerchundi R, Fernandez-Moncada I, Contreras-Baeza Y, Sotelo-Hitschfeld T, Machler P, Wyss MT, Stobart J, Baeza-Lehnert F, Alegria K, Weber B, Barros LF (2015) NH4+ triggers the release of astrocytic lactate via mitochondrial pyruvate shunting. Proc Natl Acad Sci USA 112:11090–11095

    CAS  PubMed  Google Scholar 

  82. Marcaggi P (2006) An ammonium flux from neurons to glial cells. Proc Phys Soc 3:SA16

    Google Scholar 

  83. Wilson JE (2003) Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol 206:2049–2057

    CAS  PubMed  Google Scholar 

  84. Jackson JG, O'Donnell JC, Krizman E, Robinson MB (2015) Displacing hexokinase from mitochondrial voltage-dependent anion channel impairs GLT-1-mediated glutamate uptake but does not disrupt interactions between GLT-1 and mitochondrial proteins. J Neurosci Res 93:999–1008

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all members of the Barros Lab for their contributions and discussions. We also thank Karen Everett for critical reading of the manuscript. This work was partially funded by CONICYT-BMBF Grant 180045. The Centro de Estudios Científicos (CECs) is funded by the Chilean Government through the Centers of Excellence Basal Financing Program of CONICYT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Felipe Barros.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special Issue: In Honor of Professor Juan Bolaños.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barros, L.F., Ruminot, I., San Martín, A. et al. Aerobic Glycolysis in the Brain: Warburg and Crabtree Contra Pasteur. Neurochem Res 46, 15–22 (2021). https://doi.org/10.1007/s11064-020-02964-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-02964-w

Keywords

Navigation