Skip to main content
Log in

Equatorial and Low Latitude Ionospheric Effects During Sudden Stratospheric Warming Events

Ionospheric Effects During SSW Events

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

There are several external sources of ionospheric forcing, including these are solar wind-magnetospheric processes and lower atmospheric winds and waves. In this work we review the observed ion-neutral coupling effects at equatorial and low latitudes during large meteorological events called sudden stratospheric warming (SSW). Research in this direction has been accelerated in recent years mainly due to: (1) extensive observing campaigns, and (2) solar minimum conditions. The former has been instrumental to capture the events before, during, and after the peak SSW temperatures and wind perturbations. The latter has permitted a reduced forcing contribution from solar wind-magnetospheric processes. The main ionospheric effects are clearly observed in the zonal electric fields (or vertical E×B drifts), total electron content, and electron and neutral densities. We include results from different ground- and satellite-based observations, covering different longitudes and years. We also present and discuss the modeling efforts that support most of the observations. Given that SSW can be forecasted with a few days in advance, there is potential for using the connection with the ionosphere for forecasting the occurrence and evolution of electrodynamic perturbations at low latitudes, and sometimes also mid latitudes, during arctic winter warmings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • M.A. Abdu, T. Maruyama, I.S. Batista, S. Saito, M. Nakamura, Ionospheric responses to the October 2003 superstorm: Longitude/local time effects over equatorial low and middle latitudes. J. Geophys. Res. 112(A10306) (2007). doi:10.1029/2006JA012228

  • P. Alken, A quiet time empirical model of equatorial vertical plasma drift in the Peruvian sector based on 150 km echoes. J. Geophys. Res. 114(A2), 1–6 (2009). doi:10.1029/2008JA013751

    Google Scholar 

  • D. Altadill, E.M. Apostolov, Vertical propagating signatures of wave-type oscillations (2 and 6.5 days) in the ionosphere obtained from electron-density profiles. J. Atmos. Sol.-Terr. Phys. 63, 823–834 (2001)

    ADS  Google Scholar 

  • D. Anderson, A. Anghel, K. Yumoto, M. Ishitsuka, E. Kudeki, Estimating daytime vertical E×B drift velocities in the equatorial F-region using ground-based magnetometers observations. Geophys. Res. Lett. 29 (2002). doi:10.1029/2001GL014562

  • D. Anderson, A. Anghel, J.L. Chau, K. Yumoto, Global, low-latitude, vertical E×B drift velocities inferred from daytime magnetometer observations. Space Weather 4(S08003) (2006). doi:10.1029/2005SW000193

  • D. Anderson, E.A. Araujo-Pradere, Sudden stratospheric warming event signatures in daytime exb drift velocities in the Peruvian and Philippine longitude sectors for January 2003 and 2004. J. Geophys. Res. 115, 1–7 (2010). doi:10.1029/2010JA015337

    Google Scholar 

  • D.G. Andrews, J.R. Holton, C.B. Leovy, Middle Atmosphere Dynamics (Academic Press, London, San Diego, 1987)

    Google Scholar 

  • S.M.I. Azeem, E.R. Talaat, G.G. Sivjee, H.-L. Liu, R.G. Roble, Observational study of the 4-day wave in the mesosphere preceding the sudden stratospheric warming events during 1995 and 2002. Geophys. Res. Lett. 32(L15804) (2005). doi:10.1029/2005GL023393

  • M.P. Baldwin, T.J. Dunkerton, Stratospheric harbingers of anomalous weather regimes. Science 294, 581–584 (2001)

    ADS  Google Scholar 

  • J. Bartels, 27-day variations in f2 layer critical frequencies at Huancayo. J. Atmos. Sol.-Terr. Phys. 1, 2–12 (1950)

    Google Scholar 

  • J. Bartels, H.F. Johnson, Geomagnetic tides in horizontal intensity at Huancayo. Terr. Magn. Atmos. Electr. 45, 269–308 (1940)

    Google Scholar 

  • I. Batista, R. de Medeiros, M. Abdu, J. de Souza, G. Bailey, E. de Paula, Equatorial ionospheric vertical plasma drift model over the Brazilian region. J. Geophys. Res. 101(A5), 10887–10892 (1996)

    ADS  Google Scholar 

  • F. Bertoni, I.S. Batista, M.A. Abdu, B.W. Reinisch, E.A. Kherani, A comparison of ionospheric vertical drift velocities measured by digisonde and incoherent scatter radar at the magnetic equator. J. Atmos. Sol.-Terr. Phys. 68, 669–678 (2006)

    ADS  Google Scholar 

  • D. Bilitza, O.K. Obrou, J.O. Adeniyi, O. Oladipo, Variability of fof2 in the equatorial ionosphere. Adv. Space Res. 34(9), 1901–1906 (2004)

    ADS  Google Scholar 

  • M. Blanc, A. Richmond, The ionospheric disturbance dynamo. J. Geophys. Res. 85(A4), 1669–1686 (1980)

    ADS  Google Scholar 

  • L.C. Chang, S.E. Palo, H.-L. Liu, Short-term variation of the s=1 nonmigrating semidiurnal tide during the 2002 stratospheric sudden warming. J. Geophys. Res. 114(D03109) (2009). doi:10.1029/2008JD010886

  • A.J. Charlton, L.M. Polvani, A new look at stratospheric sudden warmings. Part I: climatology and modeling benchmarks. J. Climate 20, 449–469 (2007)

    ADS  Google Scholar 

  • A.J. Charlton, A. O’Neill, A.C. Massacand, W.A. Lahoz, Sensitivity of tropospheric forecasts to stratospheric initial conditions. Q. J. R. Meteorol. Soc. 130, 1771–1792 (2004)

    ADS  Google Scholar 

  • J.L. Chau, E. Kudeki, Statistics of 150-km echoes over Jicamarca based on low-power VHF observations. Ann. Geophys. 24, 1305–1310 (2006)

    ADS  Google Scholar 

  • J.L. Chau, R.F. Woodman, Daytime vertical and zonal velocities from 150-km echoes: their relevance to F-region dynamics. Geophys. Res. Lett. 31(L17801) (2004). doi:10.1029/2004GL020800

  • J.L. Chau, B.G. Fejer, L.P. Goncharenko, Quiet variability of equatorial E×B drifts during a sudden stratospheric warming event. Geophys. Res. Lett. 36(5), 1–4 (2009). doi:10.1029/2008GL036785

    Google Scholar 

  • J.L. Chau, N.A. Aponte, E. Cabassa, M.P. Sulzer, L.P. Goncharenko, S.A. González, Quiet time ionospheric variability over arecibo during sudden stratospheric warming events. J. Geophys. Res. 115, 1–8 (2010). doi:10.1029/2010JA015378

    Google Scholar 

  • P.-R. Chen, Two-day oscillation of the equatorial ionization anomaly. J. Geophys. Res. 97(A5), 6343–6357 (1992)

    ADS  Google Scholar 

  • M.G. Conde, M.J. Nicolls, Thermospheric temperatures above Poker Flat, Alaska, during the stratospheric warming event of January and February 2009. J. Geophys. Res. 115(D00N05) (2010). 10–10292010014280

    Google Scholar 

  • O. De la Beaujardière, J.M. Retterer, R.F. Pfaff, P.A. Roddy, C. Roth, W.J. Burke, Y.J. Su, M.C. Kelley, R.R. Ilma, G.R. Wilson, L.C. Gentile, D.E. Hunton, D.L. Cooke, C/nofs observations of deep plasma depletions at dawn. Geophys. Res. Lett. 36, 1–4 (2009). doi:10.1029/2009GL038884

    Google Scholar 

  • E.R. de Paula, D.L. Hysell, The Sao Luis 30 MHz coherent scatter ionospheric radar: system description and initial results. Radio Sci. 39(RS1014) (2004). doi:10.1029/2003RS002914

  • A.J. Dowdy, R.A. Vincent, M. Tsutsumi, K. Igarashi, Y. Murayama, W. Singer, D.J. Murphy, D.M. Riggin, Polar mesosphere and lower thermosphere dynamics: 2. Response to sudden stratospheric warmings. J. Geophys. Res. 112(D17105) (2007). doi:10.1029/2006JD008127

  • S.L. England, S. Maus, T.J. Immel, S.B. Mende, Longitudinal variation of the E-region electric fields caused by atmospheric tides. Geophys. Res. Lett. 33(L21105) (2006). doi:10.1029/2006GL027465

  • J.G. Esler, R.K. Scott, Excitation of transient Rossby waves on the stratospheric polar vortex and the barotropic sudden warming. J. Atmos. Sci. 62, 3661–3682 (2005)

    ADS  Google Scholar 

  • T.W. Fang, A.D. Richmond, J.Y. Liu, A. Maute, Wind dynamo effects on ground magnetic perturbations and vertical drifts. J. Geophys. Res. 113(A11313) (2008). doi:10.1029/2008JA013513

  • B.G. Fejer, L. Scherliess, On the variability of F-region vertical plasma drifts. J. Atmos. Sol.-Terr. Phys. 63, 893–897 (2001)

    ADS  Google Scholar 

  • B.G. Fejer, E.R. de Paula, S.A. Gonzalez, R.F. Woodman, Average vertical and zonal F region plasma drifts over Jicamarca. J. Geophys. Res. 96, 13901–13906 (1991)

    ADS  Google Scholar 

  • B.G. Fejer, M.E. Olson, J.L. Chau, C. Stolle, H. Lühr, L.P. Goncharenko, K. Yumoto, T. Nagatsuma, Lunar-dependent equatorial ionospheric electrodynamic effects during sudden stratospheric warmings. J. Geophys. Res. 115, 1–9 (2010). doi:10.1029/2010JA015273

    Google Scholar 

  • B.G. Fejer, Low latitude ionospheric electrodynamics. Space Sci Rev, 115 (2010). doi:10.1007/s11214-010-9690-7

  • B.G. Fejer, J.W. Jensen, S.-Y. Su, Quiet time equatorial F region vertical plasma drift model derived from rocsat-1 observations. J. Geophys. Res. 113(A5), 10 (2008). doi:10.1029/2007JA012801

    Google Scholar 

  • J.M. Forbes, S. Leveroni, Quasi 16-day oscillation in the ionosphere. Geophys. Res. Lett. 19(10), 981–984 (1992)

    ADS  Google Scholar 

  • J.M. Forbes, S.E. Palo, X. Zhang, Variability of the ionosphere. J. Atmos. Sol.-Terr. Phys. 62, 685–693 (2000)

    ADS  Google Scholar 

  • S. Fritz, S.D. Soules, Large-scale temperature changes in the stratosphere observed from Nimbus III. J. Atmos. Sci. 27, 1091–1097 (1970)

    ADS  Google Scholar 

  • T.J. Fuller-Rowell, M. Codrescu, P. Wilkinson, Quantitative modelling of the ionospheric response to geomagnetic activity. Ann. Geophys. 18, 766–781 (2000)

    ADS  Google Scholar 

  • T.J. Fuller-Rowell, H. Wang, R. Akmaev, F. Wu, T.W.F.M. Iredell, A.D. Richmond, Forecasting the dynamic and electrodynamic response to the January 2009 sudden stratospheric warming. Geophys. Res. Lett. (2011). doi:10.1029/2011GL047732

    Google Scholar 

  • T. Fuller-Rowell, F. Wu, R. Akmaev, T.-W. Fang, E. Araujo-Pradere, A whole atmosphere model simulation of the impact of a sudden stratospheric warming on thermosphere dynamics and electrodynamics. J. Geophys. Res. 115, 1–13 (2010). doi:10.1029/2010JA015524

    Google Scholar 

  • B. Funke, M. López-Puertas, D. Bermejo-Pantaleón, M. García-Comas, G.P. Stiller, T.V. Clarmann, M. Kiefer, A. Linden, Evidence for dynamical coupling from the lower atmosphere to the thermosphere during a major stratospheric warming. Geophys. Res. Lett. 37(13), 1–5 (2010). doi:10.1029/2010GL043619

    Google Scholar 

  • L.P. Goncharenko, S.R. Zhang, Ionospheric signatures of sudden stratospheric warming: Ion temperature at middle latitude. Geophys. Res. Lett. 35(L21103) (2008). doi:10.1029/2008GL035684

  • L.P. Goncharenko, A.J. Coster, J.L. Chau, C.E. Valladares, Impact of sudden stratospheric warmings on equatorial ionization anomaly. J. Geophys. Res. 115, 1–11 (2010a). doi:10.1029/2010JA015400

    Google Scholar 

  • L.P. Goncharenko, J.L. Chau, H.-L. Liu, A.J. Coster, Unexpected connections between the stratosphere and ionosphere. Geophys. Res. Lett. 37(10), 1–6 (2010b). doi:10.1029/2010GL043125

    Google Scholar 

  • L.J. Gray, E.F. Drysdale, T.J. Dunkerton, B.N. Lawrence, Model study of the inter annual variability of the northern hemisphere stratospheric winter circulation: the role of the quasi-biennial oscillation. Q. J. R. Meteorol. Soc. 127, 1413–1432 (2001)

    ADS  Google Scholar 

  • M.E. Hagan, F. Vial, J.M. Forbes, Variability in the upward propagating semidiurnal tide due to effects of QBO in the lower atmosphere. J. Atmos. Sol.-Terr. Phys. 54, 1465–1474 (1992)

    Google Scholar 

  • R.A. Heelis, Electrodynamics in the low and middle latitude ionosphere: a tutorial. J. Atmos. Sol.-Terr. Phys. 66, 825–838 (2004)

    ADS  Google Scholar 

  • R.A. Heelis, P.C. Kendall, R.J. Moffet, D.W. Windle, H. Rishbeth, Electrical coupling of the e- and f-region and its effects on F-region drifts and winds. Planet. Space Sci. 22(5), 743–756 (1974)

    ADS  Google Scholar 

  • P. Hoffmann, W. Singer, D. Keuer, Variability of the mesospheric wind field at middle and arctic latitudes in winter and its relation to stratospheric circulation disturbances. J. Atmos. Sol.-Terr. Phys. 64, 1229–1240 (2002)

    ADS  Google Scholar 

  • P. Hoffmann, W. Singer, D. Keuer, W.K. Hocking, M. Kunze, Y. Murayama, Latitudinal and longitudinal variability of mesospheric winds and temperatures during stratospheric warming events. J. Atmos. Sol.-Terr. Phys. 69, 2355–2366 (2007)

    ADS  Google Scholar 

  • J.R. Holton, H.-C. Tan, The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci. 37, 2200–2208 (1980)

    ADS  Google Scholar 

  • R. Hutton, J.O. Oyinloye, The counter-electrojet in Nigeria. Ann. Geophys. 26, 921–926 (1970)

    Google Scholar 

  • T.J. Immel, E. Sagawa, S.L. England, S.B. Henderson, M.E. Hagan, S.B. Mende, H.U. Frey, C.M. Swenson, L.J. Paxton, The control of equatorial ionospheric morphology by atmospheric tides. Geophys. Res. Lett. 33(L15108) (2006). doi:10.1029/2006GL026161

  • T.J. Immel, S.B. Mende, M.E. Hagan, P.M. Kintner, S.L. England, Evidence of tropospheric effects on the ionosphere. Eos 90, 69 (2009). doi:10.1029/2009EO090001

    ADS  Google Scholar 

  • E.S. Kazimirovsky, G.V. Vergasova, Mesospheric, lower thermospheric dynamics and external forcing effects: a review. Indian J. Radio & Space Phys. 38, 7–36 (2009)

    Google Scholar 

  • H. Kil, R.A. Heelis, L.J. Paxton, S.-J. Oh, Formation of a plasma depletion shell in the equatorial ionosphere. J. Geophys. Res. 114(A11), 1–7 (2009). doi:10.1029/2009JA014369

    Google Scholar 

  • Y.-J. Kim, M. Flatau, Hindcasting the January 2009 arctic sudden stratospheric warming and its influence on the arctic oscillation with unified parameterization of orographic drag in NOGAPS. Part I: extended-range stand-alone forecast. Weather Forecast. 25, 1628–1644 (2010)

    ADS  Google Scholar 

  • K. Kodera, Influence of stratospheric sudden warming on the equatorial troposphere. Geophys. Res. Lett. 33(L06804) (2006). doi:10.1029/2005GL024510

  • K. Kruger, B. Naujokat, K. Labitzke, The unusual midwinter warming in the southern hemisphere stratosphere 2002: a comparison to northern hemisphere phenomena. J. Atmos. Sci. 62, 603–613 (2005)

    ADS  Google Scholar 

  • E. Kudeki, C.D. Fawcett, High resolution observations of 150 km echoes at Jicamarca. Geophys. Res. Lett. 20(18), 1987–1990 (1993)

    ADS  Google Scholar 

  • E. Kudeki, S. Bhattacharyya, R.F. Woodman, A new approach in incoherent scatter F region E×B drift measurements at Jicamarca. J. Geophys. Res. 104, 28145–28162 (1999)

    ADS  Google Scholar 

  • J. Kurihara, Y. Ogawa, S. Oyama, S. Nozawa, M. Tsutsumi, C.M. Hall, Y. Tomikawa, R. Fujii, Links between a stratospheric sudden warming and thermal structures and dynamics in the high-latitude mesosphere, lower thermosphere, and ionosphere. Geophys. Res. Lett. 37(L13806) (2010). doi:10.1029/2010GL043643

  • K. Labitzke, Temperature changes in the mesosphere and stratosphere connected with circulation changes in winter. J. Atmos. Sci. 29, 756–766 (1972)

    ADS  Google Scholar 

  • K. Labitzke, Stratospheric-mesospheric midwinter disturbances—a summary of observed characteristics. International Symposium on Middle Atmosphere Dynamics and Transport, vol. 86, p. 9665 (1981). doi:10.1029/JC086iC10p09665

    Google Scholar 

  • K. Labitzke, On the interannual variability of the middle stratosphere during the northern winters. J. Meteorol. Soc. Jpn. 60, 124–139 (1982)

    Google Scholar 

  • K. Labitzke, M. Kunze, On the remarkable Arctic winter in 2008/2009. J. Geophys. Res. 114(D00I02) (2009). doi:10.1029/2009JD012273

  • K. Labitzke, B. Naujokat, The lower arctic stratosphere since 1952, in SPARC Newsletter, vol. 15 (SPARC Office, Toronto, 2000)

    Google Scholar 

  • K. Labitzke, H. van Loon, Associations between the 11-year solar cycle, the QBO and the atmosphere. Part I: the troposphere and stratosphere in the northern hemisphere winter. J. Atmos. Sol.-Terr. Phys. 50, 197–206 (1988)

    ADS  Google Scholar 

  • J. Lei, J.P. Thayer, J.M. Forbes, E.K. Sutton, R.S. Nerem, M. Temmer, A.M. Veronig, Global thermospheric density variations caused by high-speed solar wind streams during the declining phase of solar cycle 23. J. Geophys. Res. 113(A11303) (2008). doi:10.1029/2008JA013433

  • V. Limpasuvan, D.W.J. Thompson, D.L. Hartmann, The life cycle of the northern hemisphere sudden stratospheric warmings. J. Climate 17, 2584–2596 (2004)

    ADS  Google Scholar 

  • H.L. Liu, R.G. Roble, A study of a self-generated stratospheric sudden warming and its mesospheric/lower thermospheric impacts using coupled TIME-GCM/CCM3. J. Geophys. Res. 107(4695) (2002). doi:10.1029/2001JD001533

  • H.-L. Liu, W. Wang, A.D. Richmond, R.G. Roble, Ionospheric variability due to planetary waves and tides for solar minimum conditions. J. Geophys. Res. 115, 1–13 (2010). doi:10.1029/2009JA015188

    Google Scholar 

  • H. Liu, E. Doornbos, M. Yamamoto, S.T. Ram, Strong thermospheric cooling during the 2009 major stratosphere warming. Geophys. Res. Lett. (2011). doi:10.1029/2011GL047898

  • H. Lühr, M. Rother, K. Häusler, P. Alken, S. Maus, The influence of nonmigrating tides on the longitudinal variation of the equatorial electrojet. J. Geophys. Res. 113(A08313) (2008). doi:10.1029/2008JA013064

  • G.L. Manney, M.J. Schwartz, K. Kruger, M.L. Santee, S. Pawson, J.N. Lee, W.H. Daffer, R.A. Fuller, N.J. Livesey, Aura microwave limb sounder observations of dynamics and transport during the record-breaking 2009 arctic stratospheric major warming. Geophys. Res. Lett. 36(L12815) (2009). doi:10.1029/2009GL038586

  • A.J. Mannucci, B.T. Tsurutani, B.A. Iijima, A. Komjathy, A. Saito, W.D. Gonzalez, F.L. Guarnieri, J.U. Kozyra, R. Skoug, Dayside global ionospheric response to the major interplanetary events of October 29-30, 2003, Halloween storms. Geophys. Res. Lett. 32(L12S02) (2005)

  • T. Matsuno, A dynamical model of the stratospheric sudden warming. J. Atmos. Sci. 28, 1479–1494 (1971)

    ADS  Google Scholar 

  • N.J. Matthewman, J.G. Esler, A.J. Charlton-Perez, L.M. Polvani, A new look at stratospheric sudden warmings. Part III: Polar vortex evolution and vertical structure. J. Climate 22, 1566–1585 (2009)

    ADS  Google Scholar 

  • P.N. Mayaud, The equatorial counter-electrojet: a review of its geomagnetic aspects. J. Atmos. Sol.-Terr. Phys. 39, 1055–1070 (1977)

    ADS  Google Scholar 

  • M. Mendillo, H. Rishbeth, R.G. Roble, J. Wroten, Modelling F2-layer seasonal trends and day-to-day variability driven by coupling with the lower atmosphere. J. Atmos. Sol.-Terr. Phys. 64, 1911–1931 (2002)

    ADS  Google Scholar 

  • A.V. Mikhailov, V.H. Depuev, A.H. Depueva, Synchronous NmF2 and NmE daytime variations as a key to the mechanism of quiettime F2-layer disturbances. Ann. Geophys. 25, 483–493 (2007)

    ADS  Google Scholar 

  • P. Mukhtarov, D. Pancheva, B. Andonov, N.J. Mitchell, E. Merzlyakov, W. Singer, W. Hocking, C. Meek, A. Manson, Y. Murayama, Large-scale thermodynamics of the stratosphere and mesosphere during the major stratospheric warming in 2003/2004. J. Atmos. Sol. Terr. Phys. 69 (2007). doi:10.1016/j.jastp.2007.07.012

  • A. O’Neill, Stratospheric Sudden Warmings, in Encyclopedia of Atmospheric Sciences (Elsevier Science, San Diego, 2003), pp. 1342–1353

    Google Scholar 

  • D. Pancheva, N. Mitchell, R.R. Clark, J. Drobjeva, J. Lastovicka, Variability in the maximum height of the ionospheric F2-layer over millstone hill (September 1998 to march 2000); influence from below and above. Ann. Geophys. 20, 1807–1819 (2002)

    ADS  Google Scholar 

  • D. Pancheva, P. Mukhtarov, N.J. Mitchell, B. Andonov, E. Merzlyakov, W. Singer, Y. Murayama, S. Kawamura, J. Xiong, W. Wan, W. Hocking, D. Fritts, D. Riggin, C. Meek, A. Manson, Latitudinal wave coupling of the stratosphere and mesosphere during the major stratospheric warming in 2003/2004. Ann. Geophys. 26, 467–483 (2008)

    ADS  Google Scholar 

  • D. Pancheva, P. Mukhtarov, B. Andonov, N.J. Mitchell, J.M. Forbes, Planetary waves observed by TIMED/SABER in coupling the stratosphere–mesosphere–lower thermosphere during the winter of 2003/2004: Part 2—altitude and latitude planetary wave structure. J. Atmos. Sol.-Terr. Phys. 71(1), 75–87 (2009)

    ADS  Google Scholar 

  • D. Pancheva, P. Mukhtarov, Stratospheric warmings: the atmosphere-ionosphere coupling paradigm. J. Atmos. Sol. Terr. Phys. 73 (2011). doi:10.1016/j.jastp.2011.03.066

  • H.F. Parish, J.M. Forbes, F. Kamalabadi, Planetary wave and solar emission signatures in the equatorial electrojet. J. Geophys. Res. 99(A1), 355–368 (1994)

    ADS  Google Scholar 

  • A.K. Patra, N.V. Rao, Further investigations of 150-km echoing riddle using simultaneous observations of 150-km and E region echoes from off-electrojet location Gadanki. J. Geophys. Res. 112(A09301) (2007). doi:10.1029/2006JA012204

  • N.M. Pedatella, J.M. Forbes, Evidence for stratosphere sudden warming-ionosphere coupling due to vertically propagating tides. Geophys. Res. Lett. 37(11), 1–5 (2010a). doi:10.1029/2010GL043560

    Google Scholar 

  • N.M. Pedatella, J.M. Forbes, Global structure of the lunar tide in ionospheric total electron content. Geophys. Res. Lett. 37, 06103 (2010b). doi:10.1029/2010GL042781

    Google Scholar 

  • J.E. Pingree, B.G. Fejer, On the height variation of the equatorial F region vertical plasma drifts. J. Geophys. Res. 92, 4763–4766 (1987)

    ADS  Google Scholar 

  • R.A. Plumb, Instability of the distorted polar night vortex: a theory of stratospheric warmings. J. Atmos. Sci. 38, 2514–2531 (1981)

    ADS  Google Scholar 

  • A.I. Pogoreltsev, A.A. Vlasov, K. Fröhlich, C. Jacobi, Planetary waves in coupling the lower and upper atmosphere. J. Atmos. Sol.-Terr. Phys. 69, 2083 (2007). doi:10.1016/j.jastp.2007.05.014

    ADS  Google Scholar 

  • L.M. Polvani, P.J. Kushner, Tropospheric response to stratospheric perturbations in a relatively simple general circulation model. Geophys. Res. Lett. 29(7) (2002). doi:10.1029/2001GL014284

  • L.M. Polvani, D.W. Waugh, Upward wave activity flux as precursor to extreme stratospheric events and subsequent weather regimes. J. Climate 17, 3548–3554 (2004)

    ADS  Google Scholar 

  • R.G. Rastogi, Lunar effects in the counter-electrojet near the magnetic equator. J. Atmos. Sol.-Terr. Phys. 36, 167–170 (1974)

    ADS  Google Scholar 

  • R.G. Rastogi, Morphological aspects of a new type of counter electrojet event. Ann. Geophys. 17, 210 (1999). doi:10.1007/s00585-999-0210-6

    ADS  Google Scholar 

  • A.D. Richmond, S. Matsushita, J.D. Tarpley, On the production mechanisms of electric currents and fields in the ionosphere. J. Geophys. Res. 81(4), 547–555 (1976)

    ADS  Google Scholar 

  • H. Rishbeth, The F-region dynamo. Planet. Space Sci. 19(263) (1971)

  • H. Rishbeth, F region links with the lower atmosphere? J. Atmos. Sol.-Terr. Phys. 68, 469–478 (2006)

    ADS  Google Scholar 

  • H. Rishbeth, M. Mendillo, Patterns of F2-layer variability. J. Atmos. Sol.-Terr. Phys. 63, 1661–1680 (2001)

    ADS  Google Scholar 

  • F. Sassi, R.R. Garcia, B.A. Boville, H. Liu, On temperature inversions and the mesospheric surf zone. J. Geophys. Res. 107(D19) (2002). doi:10.1029/2001JD001525

  • J.H. Sastri, Longitudinal dependence of equatorial F region vertical plasma drifts in the dusk sector. J. Geophys. Res. 101(A2), 2445–2452 (1996)

    ADS  Google Scholar 

  • S. Sathishkumar, S. Sridharan, Planetary and gravity waves in the mesosphere and lower thermosphere region over Tirunelveli (8.7°N, 77.8°E) during stratospheric warming events. Geophys. Res. Lett. 36(7), 1–5 (2009). doi:10.1029/2008GL037081

    Google Scholar 

  • L. Scherliess, B.G. Fejer, Radar and satellite global equatorial F-region vertical drift model. J. Geophys. Res. 104, 6829–6842 (1999)

    ADS  Google Scholar 

  • D.M.H. Sexton, The effect of stratospheric ozone depletion on the phase of the Antarctic oscillation. Geophys. Res. Lett. 28, 3697–3700 (2001)

    ADS  Google Scholar 

  • M.G. Shepherd, D.L. Wu, I.N. Fedulina, S. Gurubaran, J.M. Russell, M.G. Mlynczak, G.G. Shepherd, Stratospheric warming effects on the tropical mesospheric temperature field. J. Atmos. Sol.-Terr. Phys. 69, 2309–2337 (2007)

    ADS  Google Scholar 

  • D.E. Siskind, L. Coy, P. Espy, Observations of stratospheric warmings and mesospheric coolings by the TIMED SABER instrument. Geophys. Res. Lett. 32(L09804) (2005). doi:10.1029/2005GL022399

  • D.E. Siskind, S.D. Eckermann, L. Coy, J.P. McCormack, C.E. Randall, On recent interannual variability of the arctic winter mesosphere: Implications for tracer descent. Geophys. Res. Lett. 34(L09806) (2007). doi:10.1029/2007GL029293

  • D.E. Siskind, S.D. Eckermann, J.P. Mccormack, L. Coy, K.W. Hoppel, N.L. Baker, Case studies of the mesospheric response to recent minor, major, and extended stratospheric warmings. J. Geophys. Res. 115, 1–16 (2010). doi:10.1029/2010JD014114

    Google Scholar 

  • S. Sridharan, S. Sathishkumar, Seasonal and interannual variations of gravity wave activity in the low-latitude mesosphere and lower thermosphere over tirunelveli (8.7°N, 77.8°E). Ann. Geophys. 26, 3215 (2008). doi:10.5194/angeo-26-3215-2008

    ADS  Google Scholar 

  • S. Sridharan, S. Sathishkumar, S. Gurubaran, Variabilities of mesospheric tides and equatorial electrojet strength during major stratospheric warming events. Ann. Geophys. 27, 4125 (2009)

    ADS  Google Scholar 

  • R.J. Stening, Electron density profile changes associated with the equatorial electrojet. J. Atmos. Terr. Phys. 39, 157 (1977)

    ADS  Google Scholar 

  • R.J. Stening, A diurnal modulation of the lunar tide in the upper atmosphere. Geophys. Res. Lett. 16, 307 (1989). doi:10.1029/GL016i004p00307 (ISSN 0094-8276)

    ADS  Google Scholar 

  • R.J. Stening, B.G. Fejer, Lunar tide in the equatorial F region vertical ion drift velocity. J. Geophys. Res. 106, 221–226 (2001)

    ADS  Google Scholar 

  • R.J. Stening, C.E. Meek, A.H. Manson, Upper atmosphere wind systems during reverse equatorial electrojet events. Geophys. Res. Lett. 23, 3243 (1996). doi:10.1029/96GL02611

    ADS  Google Scholar 

  • R.J. Stening, J.M. Forbes, M.E. Hagan, A.D. Richmond, Experiments with a lunar atmospheric tidal model. J. Geophys. Res. 102, 13465 (1997). doi:10.1029/97JD00778

    ADS  Google Scholar 

  • R.J. Stening, A two-layer ionospheric dynamo calculation. J. Geophys. Res. 86(A5), 3543–3550 (1981)

    ADS  Google Scholar 

  • M. Taguchi, Is there a statistical connection between stratospheric sudden warming and tropospheric blocking events? J. Atmos. Sci. 65, 1442 (2008). doi:10.1175/2007JAS2363.1

    ADS  Google Scholar 

  • J.D. Tarpley, B.B. Balsley, Lunar variations in the Peruvian electrojet. J. Geophys. Res. 77, 1951 (1972). doi:10.1029/JA077i010p01951

    ADS  Google Scholar 

  • D.W.J. Thompson, S. Solomon, Interpretation of recent southern hemisphere climate change. Science 296, 895–899 (2002)

    ADS  Google Scholar 

  • D.W.J. Thompson, M.P. Baldwin, J.M. Wallace, Stratospheric connection to northern hemisphere wintertime weather: Implications for predictions. J. Climate 15, 1421–1428 (2002)

    ADS  Google Scholar 

  • R.T. Tsunoda, W.L. Ecklund, On a summer maximum in the occurrence frequency of 150 km (F 1) radar echoes over Pohnpei. Geophys. Res. Lett. 31(L06810) (2004). doi:10.1029/2003GL018704

  • K.K. Tung, R.S. Lindzen, A theory of stationary long waves. Part I: a simple theory of blocking. Mon. Weather Rev. 107, 714–734 (1979)

    ADS  Google Scholar 

  • F. Vial, J.M. Forbes, Monthly simulations of the lunar semi-diurnal tide. J. Atmos. Terr. Phys. 56, 1591–1607 (1994)

    Google Scholar 

  • C. Vineeth, T.K. Pant, R. Sridharan, Equatorial counter electrojets and polar stratospheric sudden warmings—a classical example of high latitude-low latitude coupling? Ann. Geophys. 27, 3147 (2009)

    ADS  Google Scholar 

  • C. Vineeth, T.K. Pant, K.K. Kumar, S.G. Sumod, Tropical connection to the polar stratospheric sudden warming through quasi 16-day planetary wave. Ann. Geophys. 28(11), 2007–2013 (2010). doi:10.5194/angeo-28-2007-2010

    ADS  Google Scholar 

  • R.L. Walterscheid, G.G. Sivjee, R.G. Roble, Mesospheric and lower thermospheric manifestations of a stratospheric warming event over Eureka, Canada (80°N). Geophys. Res. Lett. 27(18), 2897–2900 (2000)

    ADS  Google Scholar 

  • H. Wang, T.J. Fuller-Rowell, R.A. Akmaev, M. Hu, D.T. Kleist, M.D. Iredell, Simulation of the January 2009 sudden stratospheric 1 warming with a whole atmosphere model. Geophys. Res. Lett. (2011)

  • J.R. Winick, P.P. Wintersteiner, R.H. Picard, D. Esplin, M.G. Mlynczak, J.M. Russell III, L.L.G. (2009), OH layer characteristics during unusual boreal winters of 2004 and 2006. J. Geophys. Res. 114(A02303) (2009). doi:10.1029/2008JA013688

  • R.F. Woodman, Vertical drift velocities and east-west electric fields at the magnetic equator. J. Geophys. Res. 75(31), 6249–6259 (1970)

    ADS  Google Scholar 

  • R.F. Woodman, T. Hagfors, Methods for the measurement of vertical ionospheric motions near the magnetic equator by incoherent scattering. J. Geophys. Res. 74, 1205–1212 (1969)

    ADS  Google Scholar 

  • R.F. Woodman, J.L. Chau, R.R. Ilma, Comparison of ionosonde and incoherent scatter drift measurements at the magnetic equator. Geophys. Res. Lett. 33(L01103) (2006). doi:10.1029/2005GL023692

  • J. Xiong, W. Wan, B. Ning, L. Liu, Y. Gao, Planetary wave-type oscillations in the ionosphere and their relationship to mesospheric/lower thermospheric and geomagnetic disturbances at Wuhan (30.6°N, 114.5°E). J. Atmos. Sol.-Terr. Phys. 68, 498 (2006). doi:10.1016/j.jastp.2005.03.018

    ADS  Google Scholar 

  • C. Yamashita, H.-L. Liu, X. Chu, Gravity wave variations during the 2009 stratospheric sudden warming as revealed by ECMWF-T799 and observations. Geophys. Res. Lett. 37(L22806) (2010a). doi:10.1029/2010GL045437

  • C. Yamashita, H.-L. Liu, X. Chu, Responses of mesosphere and lower thermosphere temperatures to gravity wave forcing during stratospheric sudden warming. Geophys. Res. Lett. 37(L09803) (2010b). doi:10.1029/2009GL042351

  • X. Yue, W.S. Schreiner, J. Lei, C. Rocken, D.C. Hunt, Y.-H. Kuo, W. Wan, Global ionospheric response observed by cosmic satellites during the January 2009 stratospheric sudden warming event. J. Geophys. Res. 115 (2010). doi:10.1029/2010JA015466

  • B. Zhao, W. Wan, L. Liu, K. Igarashi, M. Nakamura, L.J. Paxton, S.-Y. Su, G. Li, Z. Ren, Anomalous enhancement of ionospheric electron content in the Asian-Australian region during a geomagnetically quiet day. J. Geophys. Res. 113(A11302) (2008). doi:10.1029/2007JA012987

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge L. Chau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chau, J.L., Goncharenko, L.P., Fejer, B.G. et al. Equatorial and Low Latitude Ionospheric Effects During Sudden Stratospheric Warming Events. Space Sci Rev 168, 385–417 (2012). https://doi.org/10.1007/s11214-011-9797-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-011-9797-5

Keywords

Navigation