Skip to main content
Log in

OSIRIS-REx Contamination Control Strategy and Implementation

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

OSIRIS-REx will return pristine samples of carbonaceous asteroid Bennu. This article describes how pristine was defined based on expectations of Bennu and on a realistic understanding of what is achievable with a constrained schedule and budget, and how that definition flowed to requirements and implementation. To return a pristine sample, the OSIRIS-REx spacecraft sampling hardware was maintained at level 100 A/2 and <180 ng/cm2 of amino acids and hydrazine on the sampler head through precision cleaning, control of materials, and vigilance. Contamination is further characterized via witness material exposed to the spacecraft assembly and testing environment as well as in space. This characterization provided knowledge of the expected background and will be used in conjunction with archived spacecraft components for comparison with the samples when they are delivered to Earth for analysis. Most of all, the cleanliness of the OSIRIS-REx spacecraft was achieved through communication among scientists, engineers, managers, and technicians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Abbreviations

AAM3:

Asteroid Approach Maneuver 3

ACS:

attitude control system

ARC:

NASA Ames Research Center

ATLO:

Assembly, Test, and Launch Operations

ATP:

adenosine triphosphate

CCWG:

Contamination Control Working Group

CDR:

Critical Design Review

CEWG:

Contamination Engineering Working Group

CFD:

computational fluid dynamics

DAC:

DSMC Analysis Code

DART™:

Direct Analysis in Real Time

DNA:

Deoxyribonucleic acid

DSMC:

Direct Simulation Monte Carlo

DTGS:

deuterated glycine trimer

EA:

combustion elemental analyzer

EACA:

\(\varepsilon\)-amino-\(n\)-caproic acid

EDL:

Earth descent and landing

EDU:

engineering design unit

EDX:

energy dispersive X-ray spectroscopy

EMP:

electron microprobe

FTIR:

Fourier transform infrared spectroscopy

GC:

gas chromatography

GC-IRMS:

GC combustion isotope ratio MS

GSFC:

NASA Goddard Space Flight Center

ICP-MS:

inductively coupled plasma MS

IEST:

Institute of Environmental Sciences and Technology

IRMS:

isotope ratio mass spectrometer

ISO:

International Organization for Standardization

JSC:

NASA Johnson Space Center

KSC:

NASA Kennedy Space Center

LA-ICPMS:

laser ablation inductively coupled plasma MS

LC:

liquid chromatography

LM:

Lockheed Martin Space Systems

LPF:

large payload fairing

MAVEN:

Mars Atmosphere and Volatile EvolutioN Mission

MRD:

mission requirement document

MS:

mass spectrometry

NASA:

National Aeronautics and Space Administration

NRC:

National Research Council

NVR:

nonvolatile residue

OCAMS:

OSIRIS-REx Camera Suite

OCSSG:

Mars Organic Contamination Science Steering Group

OLA:

OSIRIS-REx Laser Altimeter

OSIRIS-REx:

Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer

OTES:

OSIRIS-REx Thermal Emission Spectrometer

OTU:

operational taxonomic unit

OVIRS:

OSIRIS-REx Visible and Infrared Spectrometer

PDR:

preliminary design review

PFTE:

polytetrafluoroethylene

PHSF:

KSC Payload Hazardous Servicing Facility

PI:

principal investigator

ppb:

parts per billion

ppm:

parts per million

REXIS:

Regolith X-ray Imaging Spectrometer

SEM:

scanning electron microscopy

SRC:

sample return capsule

TAG:

touch-and-go

TAGSAM:

touch-and-go sample acquisition mechanism

TEM:

transmission electron microscopy

ToF-SIMS:

time-of-flight secondary ion MS

UHP:

ultrahigh purity

ULA:

United Launch Alliance

UV:

ultraviolet

VC-HS:

visibly clean-highly sensitive

VIF:

Atlas V vehicle integration facility

XANES:

X-ray absorption near edge structure

μ-L2MS:

microprobe two-step laser desorption/laser ionization MS

References

  • L.J. Allamandola, Absorption and emission characteristics of interstellar dust, in Galactic and Extragalactic Infrared Spectroscopy, in Proceedings of the XVIth ESLAB Symposium, Toledo, Spain, December 6–8, 1982, ed. by M.F. Kessler J.P. Phillips (Springer, Dordrecht, 1984), pp. 5–35

    Google Scholar 

  • L.J. Bement, Functional performance of pyrovalves. J. Spacecr. Rockets 34, 391–396 (1997)

    Article  ADS  Google Scholar 

  • E.B. Bierhaus, B.C. Clark, J.W. Harris, K.S. Payne, R.D. Dubisher, D.W. Wurts, R.A. Hund, R.M. Kuhns, T.M. Linn, J.L. Wood, A.J. May, J.P. Dworkin, E. Beshore, D.S. Lauretta, The OSIRIS-REx touch-and-go sample acquisition mechanism (TAGSAM) and flight system. Space Sci. Rev. (2017, this issue)

  • I. Boogers, W. Plugge, Y.Q. Stokkermans, A.L.L. Duchateau, Ultra-performance liquid chromatographic analysis of amino acids in protein hydrolysates using an automated pre-column derivatisation method. J. Chromatogr. A 1189, 406–409 (2008)

    Article  Google Scholar 

  • D.S. Burnett, The genesis solar wind sample return mission: past, present, and future. Meteorit. Planet. Sci. 48, 2351–2370 (2013)

    Article  ADS  Google Scholar 

  • A.S. Burton, S. Grunsfeld, J.E. Elsila, D.P. Glavin, J.P. Dworkin, The effects of parent-body hydrothermal heating on amino acid abundances in CI-like chondrites. Polar Sci. 8, 255–263 (2014)

    Article  ADS  Google Scholar 

  • A.S. Burton, J.C. Stern, J.E. Elsila, D.P. Glavin, J.P. Dworkin, Understanding prebiotic chemistry through the analysis of extraterrestrial amino acids and nucleobases in meteorites. Chem. Soc. Rev. 41, 5459–5472 (2012)

    Article  Google Scholar 

  • D.J. Carré, D.F. Hall, Contamination measurements during operation of hydrazine thrusters on the P78-2 (SCATHA) satellite. J. Spacecr. Rockets 20, 444–449 (1983)

    Article  ADS  Google Scholar 

  • Q.H.S. Chan, Y. Chikaraishi, Y. Takano, N.O. Ogawa, N. Ohkouchi, Amino acid compositions in heated carbonaceous chondrites and their compound-specific nitrogen isotopic ratios. Earth, Planets Space 68, 7 (2016)

    Article  ADS  Google Scholar 

  • J.E. Chirivella, Hydrazine Engine Plume Contamination Mapping. Final report AFRPL TR-75-16 (1975)

  • P.R. Christensen, V.E. Hamilton, G.L. Mehall, D. Pelham, W. O’Donnell, S. Anwar, H. Bowles, S. Chase, J. Fahlgren, Z. Farkas, T. Fisher, O. James, I. Kubik, I. Lazbin, M. Miner, M. Rassas, L. Schulze, K. Shamordola, T. Tourville, G. West, R. Woodward, D. Lauretta, The OSIRIS-REx thermal emission spectrometer (OTES) instrument. Space Sci. Rev. (2017, this issue)

  • B.E. Clark, R.P. Binzel, E.S. Howell, E.A. Cloutis, M. Ockert-Bell, P. Christensen, M.A. Barucci, F. DeMeo, D.S. Lauretta, H. Connolly, A. Soderberg, C. Hergenrother, L. Lim, J. Emery, M. Mueller, Asteroid (101955) 1999 RQ36: spectroscopy from 0.4 to 2.4 μm and meteorite analogs. Icarus 216, 462–475 (2011)

    Article  ADS  Google Scholar 

  • S. Clark, One of NASA’s cleanest spacecraft ever is ready to fly. Spaceflight Now. Spaceflight Now Inc. (2016a)

  • S. Clark, Quick work saved the OSIRIS-REx asteroid mission from nearby explosion. Spaceflight Now. Spaceflight Now Inc. (2016b)

  • R.C. Edgar, B.J. Haas, J.C. Clemente, C. Quince, R. Knight, UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011)

    Article  Google Scholar 

  • J.E. Elsila, D.P. Glavin, J.P. Dworkin, Cometary glycine detected in samples returned by Stardust. Meteorit. Planet. Sci. 44, 1323–1330 (2009)

    Article  ADS  Google Scholar 

  • J.K. Friedel, E. Scheller, Composition of hydrolysable amino acids in soil organic matter and soil microbial biomass. Soil Biol. Biochem. 34, 315–325 (2002)

    Article  Google Scholar 

  • D.P. Glavin, M.P. Callahan, J.P. Dworkin, J.E. Elsila, The effects of parent body processes on amino acids in carbonaceous chondrites. Meteorit. Planet. Sci. 45, 1948–1972 (2010)

    Article  ADS  Google Scholar 

  • D.P. Glavin, J.P. Dworkin, A. Aubrey, O. Botta, J.H. Doty III., Z. Martins, J.L. Bada, Amino acid analyses of Antarctic CM2 meteorites using liquid chromatography-time of flight-mass spectrometry. Meteorit. Planet. Sci. 41, 889–902 (2006)

    Article  ADS  Google Scholar 

  • D.P. Glavin, J.P. Dworkin, S.A. Sandford, Detection of cometary amines in samples returned by Stardust. Meteorit. Planet. Sci. 43, 399–413 (2008)

    Article  ADS  Google Scholar 

  • M. Groethe, S. McDougle, R. Saulsberry, Measurement of debris in the flow from pyrotechnic reaction using an instrumented Hopkinson pressure bar, in 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, American Institute of Aeronautics and Astronautics, 2008)

    Google Scholar 

  • D.M. Hudgins, S.A. Sandford, L.J. Allamandola, Infrared spectroscopy of polycyclic aromatic hydrocarbon cations. 1. Matrix-isolated naphthalene and perdeuterated naphthalene. J. Phys. Chem. 98, 4243–4253 (1994)

    Article  Google Scholar 

  • IEST, IEST-STD-CC1246D: Product Cleanliness Levels and Contamination Control Program (Institute for Environmental Science and Technology, Rolling Meadows, IL, 2002)

  • J.F. Kerridge, Carbon, hydrogen and nitrogen in carbonaceous chondrites: abundances and isotopic compositions in bulk samples. Geochim. Cosmochim. Acta 49, 1707–1714 (1985)

    Article  ADS  Google Scholar 

  • V. Kolb, J. Dworkin, S. Miller, Alternative bases in the RNA World: the prebiotic synthesis of urazole and its ribosides. J. Mol. Evol. 38, 549–557 (1994)

    Article  ADS  Google Scholar 

  • D.S. Lauretta, S.S. Balram-Knutson, E. Beshore, W.V. Boynton, C. Drouet d’Aubigny, D.N. DellaGiustina, H.L. Enos, D.R. Gholish, C.W. Hergenrother, E.S. Howell, C.A. Johnson, E.T. Morton, M.C. Nolan, B. Rizk, H.L. Roper, A.E. Bartels, B.J. Bos, J.P. Dworkin, D.E. Highsmith, M.C. Moreau, D.A. Lorenz, L.F. Lim, R. Mink, J.A. Nuth, D.C. Reuter, A.A. Simon, E.B. Bierhaus, B.H. Bryan, R. Ballouz, O.S. Barnouin, R.P. Binzel, W.F. Bottke, V.E. Hamilton, K.J. Walsh, S.R. Chesley, P.R. Christensen, B.E. Clark, H.C. Connolly, M.K. Crombie, M.G. Daly, J.P. Emery, T.J. McCoy, J.W. McMahon, D.J. Scheeres, S. Messenger, K. Nakamura-Messenger, K. Righter, S.A. Sandford, OSIRIS-REx: sample return from asteroid (101955) Bennu. Space Sci. Rev. 212(1–2), 925–984 (2017)

    Article  ADS  Google Scholar 

  • M.T. La Duc, P. Vaishampayan, H.R. Nilsson, T. Torok, K. Venkateswaran, Pyrosequencing-derived bacterial, archaeal, and fungal diversity of spacecraft hardware destined for Mars. Appl. Environ. Microbiol. 78, 5912–5922 (2012)

    Article  Google Scholar 

  • K.B. Loftin, Development of Novel DART™ TOFMS Analytical Techniques for the Identification of Organic Contamination on Spaceflight-Related Substrates and Aqueous Media. Doctoral Dissertation, University of Central Florida, Orlando, 2009

  • P.R. Mahaffy, D.W. Beaty, M.S. Anderson, G. Aveni, J.L. Bada, S.J. Clemett, D.J. Des Marais, S. Douglas, J.P. Dworkin, R.G. Kern, D.A. Papanastassiou, F.D. Palluconi, J.J. Simmonds, A. Steele, J.H. Waite, A.P. Zent, E. Stansbery, Report of the organic contamination science steering group, in 37th Annual Lunar and Planetary Science Conference, ed. by S. Mackwell (2004)

    Google Scholar 

  • A. Mahnert, P. Vaishampayan, A.J. Probst, A. Auerbach, C. Moissl-Eichinger, K. Venkateswaran, G. Berg, Cleanroom maintenance significantly reduces abundance but not diversity of indoor microbiomes. PLoS ONE 10, e0134848 (2015)

    Article  Google Scholar 

  • R.A. Masterson, M. Chodas, L. Bayley, B. Allen, J. Hong, P. Biswas, C. McMenamin, K. Stout, E. Bokhour, H. Bralower, D. Carte, S. Chen, M. Jones, S. Kissel, H. Schmidt, M. Smith, G. Sondecker, L.F. Lim, J. Grindlay, R.P. Binzel, Regolith X-ay Imaging Spectrometer (REXIS) aboard the OSIRIS-REx Asteroid Sample Return mission. Space Sci. Rev. (2017, this issue)

  • T.P. Mawhinney, R.S. Robinett, A. Atalay, M.A. Madson, Analysis of amino acids as their tert.-butyldimethylsilyl derivatives by gas-liquid chromatography and mass spectrometry. J. Chromatogr. 358, 231–242 (1986)

    Article  Google Scholar 

  • NASA, NPR 8020.12D: planetary protection provisions for robotic extraterrestrial missions. Directorate, Science Mission, NASA Procedural Requirements, NPR 8020.12D 2011. http://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=8020&s=12D

  • NASA, SN-C-0005 revision D: space shuttle contamination control requirements, Lyndon B. Johnson Space Center (1998). https://prod.nais.nasa.gov/eps/eps_data/123414-DRAFT-001-005.pdf

  • National Research Council (U.S.), Task group on organic environments in the solar system. Exploring Organic Environments in the Solar System, National Academies Press, Washington, DC (2007)

  • F.C. Neidhardt, J.L. Ingraham, M. Schaechter, Physiology of the Bacterial Cell: A Molecular Approach (Sinauer Associates, Sunderland, 1990)

    Google Scholar 

  • S. Pizzarello, Y. Huang, M.R. Alexandre, Molecular asymmetry in extraterrestrial chemistry: insights from a pristine meteorite. Proc. Natl. Acad. Sci. USA 105, 3700–3704 (2008)

    Article  ADS  Google Scholar 

  • D.H. Plemmons, M. Mehta, B.C. Clark, S.P. Kounaves, L.L. Peach, N.O. Renno, L. Tamppari, S.M.M. Young, Effects of the Phoenix Lander descent thruster plume on the Martian surface. J. Geophys. Res., Planets 113, E00A11 (2008). doi:10.1029/2007JE003059

    Article  ADS  Google Scholar 

  • S.A. Sandford, S. Bajt, S.J. Clemett, G.D. Cody, G. Cooper, B.T. Degregorio, V. de Vera, J.P. Dworkin, J.E. Elsila, G.J. Flynn, D.P. Glavin, A. Lanzirotti, T. Limero, M.P. Martin, C.J. Snead, M.K. Spencer, T. Stephan, A. Westphal, S. Wirick, R.N. Zare, M.E. Zolensky, Assessment and control of organic and other contaminants associated with the Stardust sample return from comet 81P/Wild 2. Meteorit. Planet. Sci. 45, 406–433 (2010)

    Article  ADS  Google Scholar 

  • B. Schläppi, K. Altwegg, H. Balsiger, M. Hässig, A. Jäckel, P. Wurz, B. Fiethe, M. Rubin, S.A. Fuselier, J.J. Berthelier, J. De Keyser, H. Rème, U. Mall, Influence of spacecraft outgassing on the exploration of tenuous atmospheres with in situ mass spectrometry. J. Geophys. Res. Space Phys. 115, A12313 (2010). doi:10.1029/2010JA015734

    Article  ADS  Google Scholar 

  • S.A. Smith, J.N. Benardini III, D. Anderl, M. Ford, E. Wear, M. Schrader, W. Schubert, L. DeVeaux, A. Paszczynski, S.E. Childers, Identification and characterization of early mission phase microorganisms residing on the Mars science laboratory and assessment of their potential to survive Mars-like conditions. Astrobiology 17(3), 253–265 (2017). doi:10.1089/ast.2015.1417

    Article  ADS  Google Scholar 

  • P. Tsou, D.E. Brownlee, S.A. Sandford, F. Hörz, M.E. Zolensky, Wild 2 and interstellar sample collection and Earth return. J. Geophys. Res., Planets 108(E10), 8113 (2003). doi:10.1029/2003JE002109

    Article  ADS  Google Scholar 

  • Z. Weijun, J. David, O. Yoshihiro, I.K. Ralf, Formation of nitrogen and hydrogen-bearing molecules in solid ammonia and implications for solar system and interstellar ices. Astrophys. J. 674, 1242–1250 (2008)

    Article  Google Scholar 

  • B. Williams, P. Antreasian, E. Carranza, C. Jackman, J. Leonard, D. Nelson, B. Page, D. Stanbridge, D. Wibben, K. Williams, M. Moreau, K. Berry, K. Getzandanner, A. Liounis, A. Mashiku, D. Highsmith, B. Sutter, D.S. Lauretta, OSIRIS-REx flight dynamics and navigation design. Space Sci. Rev. (2017, this issue)

  • S. Woods, R. Saulsberry, C. Keddy, H. Julien, Estimation of temperature and other properties in pyrotechnic reactions using pressure measurements and application of thermodynamic equilibrium code, in 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, American Institute of Aeronautics and Astronautics (2008)

    Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Aeronautics and Space Administration under Contracts NNH09ZDA007O, NNG12FD66C, and NNM10AA11C issued through the New Frontiers Program. We wish to thank the hundreds of people and their families who labored and sacrificed to make OSIRIS-REx a reality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Dworkin.

Additional information

OSIRIS-REx

Edited by Dante Lauretta and Christopher T. Russell

The authors E. Beshore, J.W. Harris, M.G. Martin, J.M. Vellinga are retired.

Electronic Supplementary Material

Below are the links to the electronic supplementary material.

(PDF 1.2 MB)

(PDF 218 kB)

(XLSX 1.6 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dworkin, J.P., Adelman, L.A., Ajluni, T. et al. OSIRIS-REx Contamination Control Strategy and Implementation. Space Sci Rev 214, 19 (2018). https://doi.org/10.1007/s11214-017-0439-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-017-0439-4

Keywords

Navigation