Skip to main content
Log in

Representable Monotone Operators and Limits of Sequences of Maximal Monotone Operators

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

Abstract

We show that the lower limit of a sequence of maximal monotone operators on a reflexive Banach space is a representable monotone operator. As a consequence, we obtain that the variational sum of maximal monotone operators and the variational composition of a maximal monotone operator with a linear continuous operator are both representable monotone operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asplund, E.: Averaged norms. Isr. J. Math. 5, 227–233 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  2. Attouch, H.: Familles d’opérateurs maximaux monotones et mesurabilité. Ann. Mat. Pura Appl. (4) 120, 35–111 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Attouch, H., Baillon, J.-B., Théra, M.: Variational sum of monotone operators. J. Convex Anal. 1(1), 1–29 (1994)

    MathSciNet  MATH  Google Scholar 

  4. Bauschke, H.H., Wang, X., Yao, L.: Monotone linear relations: maximality and Fitzpatrick functions. J. Convex Anal. 16(3–4), 673–686 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Bauschke, H.H., Wang, X., Yao, L.: Autoconjugate representers for linear monotone operators. Math. Program. 123(1, Ser. B), 5–24 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Borwein, J.M.: Maximal monotonicity via convex analysis. J. Convex Anal. 13(3–4), 561–586 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Fitzpatrick, S.: Representing monotone operators by convex functions. In: Workshop/ Miniconference on Functional Analysis and Optimization (Canberra, 1988), Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 20, pp. 59–65. Austral. Nat. Univ., Canberra (1988)

  8. García, Y.: New properties of the variational sum of maximal monotone operators. J. Convex Anal. 16(3–4), 767–778 (2009)

    MathSciNet  MATH  Google Scholar 

  9. García, Y., Lassonde, M., Revalski, J.P.: Extended sums and extended compositions of monotone operators. J. Convex Anal. 13(3–4), 721–738 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Martínez-Legaz, J.-E., Svaiter, B.F.: Monotone operators representable by l.s.c. convex functions. Set-Valued Anal. 13(1), 21–46 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Pennanen, T., Revalski, J.P., Théra, M.: Variational composition of a monotone operator and a linear mapping with applications to elliptic PDEs with singular coefficients. J. Funct. Anal. 198(1), 84–105 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Penot, J.-P.: The relevance of convex analysis for the study of monotonicity. Nonlinear Anal. 58(7–8), 855–871 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Penot, J.-P., Zălinescu, C.: Some problems about the representation of monotone operators by convex functions. ANZIAM J. 47(1), 1–20 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Phelps, R.R.: Convex functions, monotone operators and differentiability. In: Lecture Notes in Mathematics, vol. 1364, 2nd edn. Springer, Berlin (1993)

    Google Scholar 

  15. Revalski, J.P.: Regularization procedures for monotone operators: recent advances. In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer Optimization and Its Applications, vol. 49 (2011). doi:10.1007/978-1-4419-9569-816

  16. Revalski, J.P., Théra, M.: Generalized sums of monotone operators. C. R. Acad. Sci. Paris Sér. I Math. 329(11), 979–984 (1999)

    MATH  Google Scholar 

  17. Revalski, J.P., Théra, M.: Variational and extended sums of monotone operators. In: Ill-Posed Variational Problems and Regularization Techniques (Trier, 1998). Lecture Notes in Economics and Mathematical Systems, vol. 477, pp. 229–246. Springer, Berlin (1999)

  18. Rockafellar, R.T.: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75–88 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  19. Simons, S.: From Hahn–Banach to monotonicity. In: Lecture Notes in Mathematics, vol. 1693, 2nd edn. Springer, New York (2008)

    Google Scholar 

  20. Simons, S., Zălinescu, C.: Fenchel duality, Fitzpatrick functions and maximal monotonicity. J. Nonlinear Convex Anal. 6(1), 1–22 (2005)

    MathSciNet  MATH  Google Scholar 

  21. Svaiter, B.F.: Fixed points in the family of convex representations of a maximal monotone operator. Proc. Am. Math. Soc. 131(12), 3851–3859 (electronic) (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Voisei, M.D.: A maximality theorem for the sum of maximal monotone operators in non-reflexive Banach spaces. Math. Sci. Res. J. 10(2), 36–41 (2006)

    MathSciNet  MATH  Google Scholar 

  23. Voisei, M.D., Zălinescu, C.: Maximal monotonicity criteria for the composition and the sum under weak interiority conditions. Math. Program. 123(1, Ser. B), 265–283 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Lassonde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García, Y., Lassonde, M. Representable Monotone Operators and Limits of Sequences of Maximal Monotone Operators. Set-Valued Anal 20, 61–73 (2012). https://doi.org/10.1007/s11228-011-0178-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-011-0178-8

Keywords

Mathematics Subject Classifications (2010)

Navigation