Skip to main content
Log in

A Comparative Study on Activated Carbons Derived from a Broad Range of Agro-industrial Wastes in Removal of Large-Molecular-Size Organic Pollutants in Aqueous Phase

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

An Erratum to this article was published on 29 October 2015

Abstract

Microporous–mesoporous activated carbons from five different types of agro-industrial wastes were produced using chemical activation with ZnCl2 and carbonization at mild conditions of 600 °C, comprehensively characterized and investigated for removal of methylene blue (MB) in aqueous solution, a model large-molecular-size organic pollutant. The external part of the mango pit (mango seed husk) was used for the production of activated carbon (AC) for the first time. Despite that the raw agro-materials exhibited significantly different porosity, all activated carbons produced possessed well-developed microporous–mesoporous structures showing high surface areas and micropore volumes. Further, it was revealed that the pore size distribution of raw agro-material is a more important property in development of microporous–mesoporous structure of produced ACs than their overall porosity. All activated carbons produced adsorbed MB, reaching in most cases 100 % removal from the aqueous phase. Adsorption data were fitted well to a pseudo-second-order kinetic model. For MB adsorption, the mesoporosity and the ratio of micropores accessible for MB were the key factors since there exists the size-selectivity effect on MB adsorption due to MB molecular dimensions. The molecular dimensions of MB were estimated via DFT calculations to 1.66 × 0.82 × 0.54 nm, and this parameter was correlated with determined micropore size distributions of activated carbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

S BET :

specific surface area calculated according to the classical BET theory (m2/g)

S meso :

mesopore surface area calculated according to the modified BET equation (m2/g)

V intruse :

pore volume determined by high-pressure mercury intrusion (cm3/g)

V micro :

micropore volume calculated according to the modified BET equation (mm3 liq/g)

V net :

net pore volume determined from the nitrogen adsorption isotherm at maximum p/p 0 (~0.9900) (mm3 liq/g)

C modif :

adsorption constant in the first layer calculated according to the modified BET equation (−)

C 0 :

initial concentration of adsorbate in solution (mg/l)

C t :

adsorbate concentration in solution at time t (mg/l)

H :

initial adsorption rate as q t /t approaches 0 (mg/g min)

k 2 :

pseudo-second-order rate constant mg h)/mg h)

m AC :

mass of activated carbon mg h))

q e :

calculated equilibrium adsorption capacity (mg/g)

q t :

amount adsorbed at time t (mg/g)

t :

adsorption time (h)

V :

total volume of solution (l)

CPH-RM:

cocoa pod husk raw material

CH-RM:

coffee husk raw material

CC-RM:

corncob raw material

MSIP-RM:

internal part of the mango pit (mango seed) raw material

MSEP-RM:

external part of the mango pit (mango seed husk) raw material

CPH-AC:

cocoa pod husk-derived activated carbon

CH-AC:

coffee husk-derived activated carbon

CC-AC:

corncob-derived activated carbon

MSIP-AC:

internal part of the mango pit (mango seed)-derived activated carbon

MSEP-AC:

external part of the mango pit (mango seed husk)-derived activated carbon

ε :

porosity of material (%)

ρ Hg :

bulk density of material mg h)/cm3)

ρ He :

skeletal density of material mg h)/cm3)

References

  • Ahmad, M. A., & Rahman, N. K. (2011). Equilibrium, kinetics and thermodynamic of remazol brilliant orange 3R dye adsorption on coffee husk-based activated carbon. Chemical Engineering Journal, 170(1), 154–161.

    Article  CAS  Google Scholar 

  • Ahmad, F., Daud, W. M. A. W., Ahmad, M. A., & Radzi, R. (2012). Cocoa (Theobroma cacao) shell-based activated carbon by CO2 activation in removing of cationic dye from aqueous solution: kinetics and equilibrium studies. Chemical Engineering Research and Design, 90(10), 1480–1490.

    Article  CAS  Google Scholar 

  • Ahmadpour, A., & Do, D. D. (1997). The preparation of activated carbon from macadamia nutshell by chemical activation. Carbon, 35(12), 1723–1732.

    Article  CAS  Google Scholar 

  • Akpen, G. D., Nwaogazie, I. L., & Leton, T. G. (2011). Optimum conditions for the removal of colour from waste water by mango seed shell based activated carbon. Indian Journal of Science and Technology, 4(8), 890–894.

    CAS  Google Scholar 

  • Azevedo, D., Araujo, J., Bastos-Neto, M., Torres, A. E. B., Jaguaribe, E. F., & Cavalcante, C. L. (2007). Microporous activated carbon prepared from coconut shells using chemical activation with zinc chloride. Microporous and Mesoporous Materials, 100(1), 361–364.

    Article  CAS  Google Scholar 

  • Bagheri, N., & Abedi, J. (2009). Preparation of high surface area activated carbon from corn by chemical activation using potassium hydroxide. Chemical Engineering Research and Design, 87(8), 1059–1064.

    Article  CAS  Google Scholar 

  • Barrett, P. E., Joyner, L. G., & Halenda, P. P. (1951). The determination of pore volume and area distributions in porous substances—computations from nitrogen isotherms. Journal of the American Chemical Society, 73, 373–380.

    Article  CAS  Google Scholar 

  • Becke, A. D. J. (1993). Density functional thermochemistry. III. The role of exact exchange. Chemical Physics, 98, 5648–5652.

    CAS  Google Scholar 

  • Bekalo, S. A., & Reinhardt, H. W. (2010). Fibers of coffee husk and hulls for the production of particle board. Materials and Structures, 43, 1049–60.

    Article  CAS  Google Scholar 

  • Bello, O., Ahmad, M., & Siang, T. (2011). Utilization of cocoa pod husk for the removal of Remazol Black B reactive dye from aqueous solutions: kinetic, equilibrium and thermodynamic studies. Trends in Applied Sciences Research, 6, 794–812.

    Article  CAS  Google Scholar 

  • Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309–319.

    Article  CAS  Google Scholar 

  • Cruz, G., Pirilä, M., Huuhtanen, M., Carrión, L., & Alvarenga, E. (2012). Production of activated carbon from cocoa (Theobroma cacao) pod husk. Journal Civil Environmental Engineering, 2(109), 1–6.

    Google Scholar 

  • Dias, J. M., Alvim-Ferraz, M., Almeida, M. F., Rivera-Utrilla, J., & Sánchez-Polo, M. (2007). Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. Journal of Environmental Management, 85(4), 833–846.

    Article  CAS  Google Scholar 

  • Elizalde-González, M. P., & Hernandez-Montoya, V. (2007). Characterization of mango pit as raw material in the preparation of activated carbon for wastewater treatment. Biochemical Engineering Journal, 36(3), 230–238.

    Article  Google Scholar 

  • Fisal, A., Daud, W. M. A. W., Ahmad, M. A., & Radzi, R. (2011). Using cocoa (Theobroma cacao) shell-based activated carbon to remove 4-nitrophenol from aqueous solution: kinetics and equilibrium studies. Chemical Engineering Journal, 178, 461–467.

    Article  CAS  Google Scholar 

  • Frisch, M., Trucks, G. W., Schlegel, H., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., & Dannenberg, J. J. (2004). Gaussian 03, revision c. 02 (p. 4). Wallingford: Gaussian. Inc.

    Google Scholar 

  • Galiatsatou, P., Metaxas, M., & Kasselouri-Rigopoulou, V. (2001). Mesoporous activated carbon from agricultural byproducts. Mikrochimica Acta, 136, 147–152.

    Article  CAS  Google Scholar 

  • Gregg, S. J., & Sing, K. S. W. (1982). Adsorption, surface area and porosity. New York: Academic Press.

    Google Scholar 

  • Hatta, Z. M. (2013). Chemical composition and morphological of cocoa pod husk and cassava peels for pulp and paper production. Australian Journal of Basic and Applied Sciences, 7(9), 406–411.

    Google Scholar 

  • Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451–465.

    Article  CAS  Google Scholar 

  • Horvath, G., & Kawazoe, K. (1983). Method for the calculation of effective pore size distribution in molecular sieve carbon. Journal of Chemical Engineering of Japan, 16(6), 470–475.

    Article  CAS  Google Scholar 

  • Hu, Z., Guo, H., Srinivasan, M. P., & Yaming, N. (2003). A simple method for developing mesoporosity in activated carbon. Seperation and Purification Technology, 31, 47–52.

    Article  Google Scholar 

  • Kwaghger, A., & Ibrahim, J. S. (2013). Optimization of conditions for the preparation of activated carbon from mango nuts using HCl. American Journal of Engineering Research, 2(7), 74–85.

    Google Scholar 

  • Lecloux, A., & Pirard, J. P. (1979). The importance of standard isotherms in the analysis of adsorption isotherms for determining the porous texture of solids. Journal of Colloid and Interface Science, 70(2), 265–281.

    Article  CAS  Google Scholar 

  • Lee, C. T., Yang, W. T., & Parr, R. G. (1988). Development of the Colle–Salvetti correlation-energy formula into a functional of the electron-density. Physical Review B, 37, 785–789.

    Article  CAS  Google Scholar 

  • Liou, T. H. (2010). Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation. Chemical Engineering Journal, 158, 129–142.

    Article  CAS  Google Scholar 

  • Lu, T., & Chen, F. (2012). Multiwfn: a multifunctional wave function analyzer. Journal of Computational Chemistry, 33, 580–592.

    Article  Google Scholar 

  • Minagri- Ministry of Agriculture and Drainage of Peru (2013). Agricultural dynamic 2003 – 2012. http://www.minag.gob.pe/portal/download/pdf/especiales/dinamica/dinamicaagropecuaria2003-2012.pdf. Accessed 4th of August 2014.

  • Mohan, D., Pittman, C. U., & Steele, P. H. (2006). Pyrolysis of wood/biomass for bio-oil: a critical review. Energy and Fuels, 20(3), 848–889.

    Article  CAS  Google Scholar 

  • Nieto-Delgado, C., & Rangel-Mendez, J. R. (2013). In situ transformation of agave bagasse into activated carbon by use of an environmental scanning electron microscope. Microporous and Mesoporous Materials, 167, 249–253.

    Article  CAS  Google Scholar 

  • Oliveira, L. C., Pereira, E., Guimaraes, I. R., Vallone, A., Pereira, M., Mesquita, J. P., & Sapag, K. (2009). Preparation of activated carbons from coffee husks utilizing FeCl3 and ZnCl2 as activating agents. Journal of Hazardous Materials, 165(1), 87–94.

    Article  CAS  Google Scholar 

  • Roberts, B. F. (1967). A procedure for estimating pore volume and area distributions from sorption isotherms. Journal of Colloid and Interface Science, 23(2), 266–273.

    Article  CAS  Google Scholar 

  • Schneider, P. (1995). Adsorption isotherms of microporous–mesoporous solids revisited. Applied Catalysis A: General, 129(2), 157–165.

    Article  CAS  Google Scholar 

  • Song, M., Jin, B., Xiao, R., Yang, L., Wu, Y., Zhong, Z., & Huang, Y. (2013). The comparison of two activation techniques to prepare activated carbon from corn cob. Biomass and Bioenergy, 48, 250–256.

    Article  CAS  Google Scholar 

  • Sun, Y., & Webley, P. A. (2010). Preparation of activated carbons from corncob with large specific surface area by a variety of chemical activators and their application in gas storage. Chemical Engineering Journal, 162(3), 883–892.

    Article  CAS  Google Scholar 

  • Sych, N. V., Trofymenko, S. I., Poddubnaya, O. I., Tsyba, M. M., Sapsay, V. I., Klymchuk, D. O., & Puziy, A. M. (2012). Porous structure and surface chemistry of phosphoric acid activated carbon from corncob. Applied Surface Science, 261, 75–82.

    Article  CAS  Google Scholar 

  • Theivarasu, C., & Mylsamy, S. (2010). Equilibrium and kinetic adsorption studies of Rhodamine-B from aqueous solutions using cocoa (Theobroma cacao) shell as a new adsorbent. International Journal of Engineering Science and Technology, 2(11), 6284–6292.

    Google Scholar 

  • Tsai, W. T., Chang, C. Y., & Lee, S. L. (1998). A low cost adsorbent from agricultural waste corn cob by zinc chloride activation. Bioresource Technology, 64(3), 211–217.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The National University of Tumbes provided important financial support (Proyecto de Investigación Docente – Resolución N° 1217-2013/UNT-R). The Academy of Sciences of the Czech Republic and Consejo Nacional de Ciencia, Tecnologia e Innovación Tecnológica (CONCYTEC) in Peru (joint project reg. No. 002/PE/2012) are also gratefully recognized for their support. The Academy of Finland and the Finnish Funding Agency for Innovation (Tekes) are acknowledged for research funding to the AdMatU project from the Development funds and to the HYMEPRO project, respectively. Thanks to Dr. Gladys Ocharan, Alex Diamond, and Hana Šnajdaufová (from ICPF) for technical support and Dr. Tomáš Strašák (from ICPF) for help with DFT calculations.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Matějová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz, G.J.F., Matějová, L., Pirilä, M. et al. A Comparative Study on Activated Carbons Derived from a Broad Range of Agro-industrial Wastes in Removal of Large-Molecular-Size Organic Pollutants in Aqueous Phase. Water Air Soil Pollut 226, 214 (2015). https://doi.org/10.1007/s11270-015-2474-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2474-7

Keywords

Navigation