Skip to main content
Log in

Decolorization of Textile Reactive Dyes and Effluents by Biofilms of Trametes polyzona LMB-TM5 and Ceriporia sp. LMB-TM1 Isolated from the Peruvian Rainforest

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The textile industry creates environmental problems due to the release of highly polluting effluents containing substances from different stages of dyeing that are resistant to light, water, and various chemicals, and most of them are difficult to decolorize because of its synthetic origin. The biological degradation of dyes is an economical and environmentally friendly alternative. The aim of this work was to use biofilms of basidiomycete fungi isolated from the Peruvian rainforest for the decolorization of synthetic reactive dyes, considering the advantages of these systems which include better contact with the surrounding medium, resistance to chemical and physical stress, and higher metabolic activity. Among several isolates, two were selected for their capacity of rapid decolorization of several dyes and their biofilm-forming ability. These strains were molecularly identified as Trametes polyzona LMB-TM5 and Ceriporia sp. LMB-TM1 and used in biofilm cultivation for the decolorization of six reactive dyes and textile effluents. Azo dyes were moderately decolorized by both strains, but Remazol Brilliant Blue R (anthraquinone) and Synozol Turquoise Blue HF-G (phthalocyanine) were highly decolorized (97 and 80 %, respectively) by T. polyzona LMB-TM5. Degradation products were found by HPLC analysis. Simulated effluents made of a mixture of six dyes were moderately decolorized by both strains, but a real textile effluent was highly (93 %) decolorized by T. polyzona LMB-TM5. In summary, T. polyzona LMB-TM5 was more efficient than Ceriporia sp. LMB-TM1 for the decolorization of textile dyes and effluents at high initial rates enabling the development of in-plant continuous biofilm processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ali, H. (2010). Biodegradation of synthetic dyes—a review. Water, Air, and Soil Pollution, 213, 251–273.

    Article  CAS  Google Scholar 

  • Ali, L., Algaithi, R., Habib, H. M., Souka, U., Rauf, M. A., & Ashraf, S. S. (2013). Soybean peroxidase-mediated degradation of an azo dye—a detailed mechanistic study. BMC Biochemistry, 14, 35. doi:10.1186/1471-2091-14-35.

    Article  Google Scholar 

  • Bagewadi, Z. B., Vernekar, A. G., Patil, A. Y., Limaye, A. A., & Jain, V.-M. (2011). Biodegradation of industrially important textile dyes by actinomycetes isolated from activated sludge. Biotechnology, Bioinformatics and Bioengineering, 1, 351–360.

    Google Scholar 

  • Bellemain, E., Carlsen, T., Brochmann, C., Coissac, E., Taberlet, P., & Kauserud, H. (2010). ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiology, 10, 189. doi:10.1186/1471-2180-10-189.

    Article  Google Scholar 

  • Chacko, J., & Subramaniam, K. (2011). Enzymatic degradation of azo dyes—a review. International Journal of Environmental Sciences, 1, 1250–1260.

    Google Scholar 

  • Chairin, T., Nitheranont, T., Watanabe, A., Asada, Y., Khanongnuch, C., & Lumyong, S. (2013). Biodegradation of bisphenol A and decolorization of synthetic dyes by laccase from white-rot fungus, Trametes polyzona. Applied Biochemistry and Biotechnology, 169, 539–545.

    Article  CAS  Google Scholar 

  • Chairin, T., Nitheranont, T., Watanabe, A., Asada, Y., Khanongnuch, C., & Lumyong, S. (2014). Purification and characterization of the extracellular laccase produced by Trametes polyzona WR7101 under solid-state fermentation. Journal of Basic Microbiology, 54, 35–43.

    Article  CAS  Google Scholar 

  • Chau, H. W., Goh, Y. K., Si, B. C., & Vujanovic, V. (2010). Assessment of alcohol percentage test for fungal surface hydrophobicity measurement. Letters in Applied Microbiology, 50, 295–300.

    Article  CAS  Google Scholar 

  • Choi, Y.-S., Seo, J.-Y., Lee, H., Yoo, J., Jung, J., Kim, J.-J., & Kim, G.-H. (2014). Decolorization and detoxification of wastewater containing industrial dyes by Bjerkandera adusta KUC9065. Water, Air, and Soil Pollution, 225, 1801.

    Article  Google Scholar 

  • D’Agostini, E. C., Mantovani, T. R. D., do Valle, J. S., Paccola-Meirelles, L. D., Colauto, N. B., & Linde, G. A. (2011). Low carbon/nitrogen ratio increases laccase production from basidiomycetes in solid substrate cultivation. Scientia Agricola, 68, 295–300.

    Article  Google Scholar 

  • de Jong, E., de Vries, F. P., Field, J. A., van der Zwan, R. P., & de Bont, J. A. M. (1992). Isolation and screening of basidiomycetes with high peroxidative activity. Mycological Research, 96, 1098–1104.

    Article  Google Scholar 

  • Elisashvili, V., & Kachlishvili, E. (2009). Physiological regulation of laccase and manganese peroxidase production by white-rot Basidiomycetes. Journal of Biotechnology, 144, 37–42.

    Article  CAS  Google Scholar 

  • Gutiérrez-Correa, M., & Villena, G. K. (2003). Surface adhesion fermentation: a new fermentation category. Revista Peruana de Biología, 10, 113–124.

    Google Scholar 

  • Gutiérrez-Correa, M., Ludeña, Y., Ramage, G., & Villena, G. K. (2012). Recent advances on filamentous fungal biofilms for industrial uses. Applied Biochemistry and Biotechnology, 167, 1235–1253.

    Article  Google Scholar 

  • Hadibarata, T., Yusoff, A. R. M., & Kristanti, R. A. (2012). Acceleration of anthraquinone-type dye removal by white-rot fungus under optimized environmental conditions. Water, Air, and Soil Pollution, 223, 4669–4677.

    Article  CAS  Google Scholar 

  • Hailei, W., Guangli, Y., Ping, L., Yanchang, G., Jun, L., Guosheng, L., & Jianming, Y. (2009). Overproduction of Trametes versicolor laccase by making glucose starvation using yeast. Enzyme and Microbial Technology, 45, 146–149.

    Article  Google Scholar 

  • Hong, C.-Y., Kim, H.-Y., Lee, S.-Y., Kim, S.-H., Lee, S.-M., & Choi, I.-G. (2013). Involvement of extracellular and intracellular enzymes of Ceriporia sp. ZLY-2010 for biodegradation of polychlorinated biphenyls (PCBs). Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 48, 1280–1291.

    Article  CAS  Google Scholar 

  • Iqbal, H. M. N., Asgher, M., & Bhatti, H. N. (2011). Optimization of physical and nutritional factors for synthesis of lignin degrading enzymes by a novel strain Trametes versicolor. BioResources, 6, 1273–1287.

    CAS  Google Scholar 

  • Janusz, G., Kucharzyk, K. H., Pawlik, A., Staszczak, M., & Paszczynski, A. J. (2013). Fungal laccase, manganese peroxidase and lignin peroxidase: gene expression and regulation. Enzyme and Microbial Technology, 52, 1–12.

    Article  CAS  Google Scholar 

  • Jaouani, A., Tabka, M. G., & Penninckx, M. J. (2006). Lignin modifying enzymes of Coriolopsis polyzona and their role in olive oil mill wastewaters decolourisation. Chemosphere, 62, 1421–1430.

    Article  CAS  Google Scholar 

  • Jia, B.-S., Zhou, L.-W., Cui, B.-K., Rivoire, B., & Dai, Y.-C. (2014). Taxonomy and phylogeny of Ceriporia (Polyporales, Basidiomycota) with an emphasis of Chinese collections. Mycological Progress, 13, 81–93.

    Article  Google Scholar 

  • Justo, A., & Hibbett, D. S. (2011). Phylogenetic classification of Trametes (Basidiomycota, Polyporales) based on a five-marker dataset. Taxon, 60, 1567–1583.

    Google Scholar 

  • Kapdan, I. K., & Kargi, F. (2002). Biological decolorization of textile dyestuff containing wastewater by Coriolus versicolor in a rotating biological contactor. Enzyme and Microbial Technology, 30, 195–199.

    Article  CAS  Google Scholar 

  • Khan, R., Bhawana, P., & Fulekar, M. H. (2013). Microbial decolorization and degradation of synthetic dyes: a review. Reviews in Environmental Science and Bio/Technology, 12, 75–97.

    Article  CAS  Google Scholar 

  • Kurniawati, S., & Nicell, J. A. (2008). Characterization of Trametes versicolor laccase for the transformation of aqueous phenol. Bioresource Technology, 99, 7825–7834.

    Article  CAS  Google Scholar 

  • Lee, H., Jang, Y., Choi, Y.-S., Kim, M.-J., Lee, J., Lee, H., Hong, J.-H., Lee, Y. M., Kim, G.-H., & Kim, J.-J. (2014). Biotechnological procedures to select white rot fungi for the degradation of PAHs. Journal of Microbiological Methods, 97, 56–62.

    Article  CAS  Google Scholar 

  • Linder, M. B., Szilvay, G. R., Nakari-Setälä, T., & Penttilä, M. E. (2005). Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiology Reviews, 29, 877–896.

    Article  CAS  Google Scholar 

  • Lorenzen, K., & Anke, T. (1998). Basidiomycetes as a source for new bioactive natural products. Current Organic Chemistry, 2, 329–364.

    CAS  Google Scholar 

  • Manu, B., & Chaudhari, S. (2002). Anaerobic decolorisation of simulated textile wastewater containing azo dyes. Bioresource Technology, 82, 225–231.

    Article  CAS  Google Scholar 

  • Martins, M. A. M., Lima, N., Silvestre, A. J. D., & Queiroz, M. J. (2003). Comparative studies of fungal degradation of single or mixed bioaccessible reactive azo dyes. Chemosphere, 52, 967–973.

    Article  CAS  Google Scholar 

  • Mgbeahuruike, A. C., Kovalchuk, A., Chen, H., Ubhayasekera, W., & Asiegbu, F. O. (2013a). Evolutionary analysis of hydrophobin gene family in two wood-degrading basidiomycetes, Phlebia brevispora and Heterobasidion annosum s.l. BMC Evolutionary Biology, 13, 240. doi:10.1186/1471-2148-13-240.

    Article  Google Scholar 

  • Mgbeahuruike, A. C., Kovalchuk, A., & Asiegbu, F. O. (2013b). Comparative genomics and evolutionary analysis of hydrophobins from three species of wood-degrading fungi. Mycologia, 105, 1471–1478.

    Article  CAS  Google Scholar 

  • Moreira-Neto, S. L., Mussatto, S. I., Machado, K. M. G., & Milagres, A. M. F. (2013). Decolorization of salt-alkaline effluent with industrial reactive dyes by laccase-producing basidiomycetes strains. Letter in Applied Microbiology, 56, 283–290.

    Article  CAS  Google Scholar 

  • Nyanhongo, G. S., Gomes, J., Gübitz, G. M., Zvauya, R., Read, J., & Steiner, W. (2002). Decolorization of textile dyes by laccases froma newly isolated strain of Trametes modesta. Water Research, 36, 1449–1456.

    Article  CAS  Google Scholar 

  • O’Neill, C., Lopez, A., Esteves, S., Hawkes, F. R., Hawkes, D. L., & Wilcox, S. (2000). Azo-dye degradation in an anaerobic-aerobic treatment system operating on simulated textile effluent. Applied Microbiology and Biotechnology, 53, 249–254.

    Article  Google Scholar 

  • Osma, J. F., Toca-Herrera, J. L., & Rodríguez-Couto, S. (2010). Biodegradation of a simulated textile effluent by immobilised-coated laccase in laboratory-scale reactors. Applied Catalysis A: General, 373, 147–153.

    Article  CAS  Google Scholar 

  • Prabha, T. R., Revathi, K., Vinod, M. S., Shanthakumar, S. P., & Bernard, P. (2013). A simple method for total genomic DNA extraction from water moulds. Current Science, 104, 345–347.

    CAS  Google Scholar 

  • Puvaneswari, N., Muthukrishnan, J., & Gunasekaran, P. (2006). Toxicity assessment and microbial degradation of azo dyes. Indian Journal Experimental Biology, 44, 618–626.

    CAS  Google Scholar 

  • Ratna, & Padhi, B. (2012). Pollution due to synthetic dyes toxicity & carcinogenicity studies and remediation. International Journal of Environmental Sciences, 3, 940–955.

    CAS  Google Scholar 

  • Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77, 247–255.

    Article  CAS  Google Scholar 

  • Rodríguez-Couto, S. (2013). Treatment of textile wastewater by white-rot fungi: still a far away reality? Textiles and Light Industrial Science and Technology, 2, 113–119.

  • Saratale, R. G., Saratale, G. D., Chang, J. S., & Govindwar, S. P. (2011). Bacterial decolorization and degradation of azo dyes: a review. Journal of the Taiwan Institute of Chemical Engineers, 42, 138–157.

    Article  CAS  Google Scholar 

  • Sari, A. A., Tachibana, S., & Muryanto. (2012). Correlation of ligninolytic enzymes from the newly-found species Trametes versicolor U97 with RBBR decolorization and DDT degradation. Water, Air, and Soil Pollution, 223, 5781–5792.

    Article  CAS  Google Scholar 

  • Schliephake, K., Mainwaring, D. E., Lonergan, G. T., Jones, I. K., & Baker, W. L. (2000). Transformation and degradation of the disazo dye Chicago Sky Blue by a purified laccase from Pycnoporus cinnabarinus. Enzyme and Microbial Technology, 27, 100–107.

    Article  CAS  Google Scholar 

  • Schneider, K., Hafner, C., & Jäger, I. (2004). Mutagenicity of textile dye products. Journal of Applied Toxicology, 24, 83–91.

    Article  CAS  Google Scholar 

  • Solis, M., Solís, A., Pérez, H. I., Manjarrez, N., & Flores, M. (2012). Microbial decolouration of azo dyes: a review. Process Biochemistry, 47, 1723–1748.

  • Stolz, A. (2001). Basic and applied aspects in the microbial degradation of azo dyes. Applied Microbiology and Biotechnology, 56, 69–80.

    Article  CAS  Google Scholar 

  • Villena, G. K., & Gutiérrez-Correa, M. (2006). Production of cellulase by Aspergillus niger biofilms developed on polyester cloth. Letters in Applied Microbiology, 43, 262–268.

    Article  CAS  Google Scholar 

  • Villena, G. K., & Gutiérrez-Correa, M. (2007). Morphological patterns of Aspergillus niger biofilms and pellets related to lignocellulolytic enzyme productivities. Letters in Applied Microbiology, 45, 231–237.

    Article  CAS  Google Scholar 

  • Villena, G., Moreno, P., & Gutierrez-Correa, M. (2001). Cellulase production by fungal biofilms on polyester cloth. Agro-Food-Industry Hi-Tech, 12, 32–35.

    CAS  Google Scholar 

  • Villena, G. K., Fujikawa, T., Tsuyumu, S., & Gutiérrez-Correa, M. (2010). Structural analysis of biofilms and pellets of Aspergillus niger by confocal scanning laser microscopy and cryo scanning electron microscopy. Bioresource Technology, 101, 1920–1926.

    Article  CAS  Google Scholar 

  • Welti, S., Moreau, P.-A., Favel, A., Courtecuisse, R., Haon, M., Navarro, D., Taussac, S., & Lesage-Meessen, L. (2012). Molecular phylogeny of Trametes and related genera, and description of a new genus Leiotrametes. Fungal Diversity, 55, 47–64.

    Article  Google Scholar 

  • Wesenberg, D., Kyriakides, I., & Agathos, S. N. (2003). White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnology Advances, 22, 161–187.

    Article  CAS  Google Scholar 

  • Xavier, A. M. R. B., Tavares, A. P. M., Ferreira, R., & Amado, F. (2007). Trametes versicolor growth and laccase induction with by-products of pulp and paper industry. Electronic Journal of Biotechnology. doi:10.2225/vol10-issue3-fulltext-1.

    Google Scholar 

  • Yamanaka, R., Soares, C. F., Matheus, D. R., & Machado, K. M. G. (2008). Lignolytic enzymes produced by Trametes villosa ccb176 under different culture conditions. Brazilian Journal of Microbiology, 39, 78–84.

    Article  Google Scholar 

  • Zhao, X., & Hardin, I. R. (2007). HPLC and spectrophotometric analysis of biodegradation of azo dyes by Pleurotus ostreatus. Dyes and Pigments, 73, 322–325.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant no. 110-FINCYT-FIDECOM-PIPEA-2012 from the National Program of Innovation for Competitiveness and Productivity of Peru. The authors wish to thank to Mrs. Mary Pasmiño for her technical assistance.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Gutiérrez-Correa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cerrón, L.M., Romero-Suárez, D., Vera, N. et al. Decolorization of Textile Reactive Dyes and Effluents by Biofilms of Trametes polyzona LMB-TM5 and Ceriporia sp. LMB-TM1 Isolated from the Peruvian Rainforest. Water Air Soil Pollut 226, 235 (2015). https://doi.org/10.1007/s11270-015-2505-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2505-4

Keywords

Navigation