Skip to main content
Log in

Bacillus aryabhattai BA03: a novel approach to the production of natural value-added compounds

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A strain designated as BA03, with the ability to transform ferulic acid into vanillin and 4-vinylguaiacol, was isolated from contaminated cryovials. The production of natural value-added compounds was dependent on the media employed. The morphological and physiological characteristics of this strain were compared with those of the typical vanillin-producer strain Amycolatopsis sp. ATCC 39116. According to a partial 16S rRNA sequence, we determined that BA03 belonged to Bacillus aryabhattai. In addition, analysis of the results showed that this strain exhibited interesting enzymatic activity, including cellulases, laccases, lipases and pectinases. In light of this, we propose new functions for this multitasking microorganism. We suggest that it may be used for converting lignocellulosic wastes into byproducts with industrial uses, and also for treating disposal residues such as dyes in the textile industry. Hence, the possibility for novel research with B. aryabhattai opens up in the fields of biodegradation and/or revalorization of wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adamu HA, Iqbal S, Chan KW, Ismail M (2012) Biotransformation of ferulic acid to 4-vinyl guaiacol by Lactobacillus farciminis. Afr J Biotechnol 11:1177–1184. doi:10.5897/AJB11.520

    Article  CAS  Google Scholar 

  • Arahal DR, Sanchez E, Macian MC, Garay E (2008) Value of recN sequences for species identification and as a phylogenetic marker within the family “Leuconostocaceae”. Int Microbiol 11:33–39

    CAS  Google Scholar 

  • Baqueiro-Peña I, Rodríguez-Serrano G, González-Zamora E et al (2010) Biotransformation of ferulic acid to 4-vinylguaiacol by a wild and a diploid strain of Aspergillus niger. Bioresour Technol 101:4721–4724. doi:10.1016/j.biortech.2010.01.086

    Article  Google Scholar 

  • Bernini R, Mincione E, Barontini M et al (2007) Obtaining 4-vinylphenols by decarboxylation of natural 4-hydroxycinnamic acids under microwave irradiation. Tetrahedron 63:9663–9667. doi:10.1016/j.tet.2007.07.035

    Article  CAS  Google Scholar 

  • Brown ME, Walker MC, Nakashige TG et al (2011) Discovery and characterization of heme enzymes from unsequenced bacteria: application to microbial lignin degradation. J Am Chem Soc 133:18006–18009. doi:10.1021/ja203972q

    Article  CAS  Google Scholar 

  • Dávila Costa JS, Amoroso MJ (2014) Current biotechnological applications of the genus Amycolatopsis. World J Microbiol Biotechnol 30:1919–1926. doi:10.1007/s11274-014-1622-3

    Article  Google Scholar 

  • Davis JR, Goodwin LS, Woyke T et al (2012) Genome sequence of Amycolatopsis sp. strain ATCC 39116, a plant biomass-degrading actinomycete. J Bacteriol 194:2396–2397. doi:10.1128/JB.00186-12

    Article  CAS  Google Scholar 

  • Donaghy J, Kelly PF, McKay AM (1998) Detection of ferulic acid esterase production by Bacillus spp. and lactobacilli. Appl Microbiol Biotechnol 50:257–260. doi:10.1007/s002530051286

    Article  CAS  Google Scholar 

  • Donaghy JA, Kelly PF, Mckay A (1999) Conversion of ferulic acid to 4-vinyl guaiacol by yeasts isolated from unpasteurised apple juice. J Sci Food Agric 456:453–456

    Article  Google Scholar 

  • EC Regulation No 1333/2008 of the European Parlamient ans of the Council of 16 December 2008 on food aditivies OJ L 354/16

  • Fleige C, Hansen G, Kroll J, Steinbüchel A (2013) Investigation of the Amycolatopsis sp. strain ATCC 39116 vanillin dehydrogenase and its impact on the biotechnical production of vanillin. Appl Environ Microbiol 79:81–90. doi:10.1128/AEM.02358-12

    Article  CAS  Google Scholar 

  • Food and Drug Administration Department of Health and Human Services (2014) Code of federal regulations tittle 21, chapter 1, subchapter B, part 101 food labeling. April 2014. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=101.22

  • Gorke B, Stulke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6:613–624

    Article  Google Scholar 

  • Graf N, Altenbuchner J (2014) Genetic engineering of Pseudomonas putida KT2440 for rapid and high-yield production of vanillin from ferulic acid. Appl Microbiol Biotechnol 98:137–149. doi:10.1007/s00253-013-5303-1

    Article  CAS  Google Scholar 

  • Hua D, Ma C, Song L et al (2007) Enhanced vanillin production from ferulic acid using adsorbent resin. Appl Microbiol Biotechnol 74:783–790. doi:10.1007/s00253-006-0735-5

    Article  CAS  Google Scholar 

  • Imriskova I, Arreguín-Espinosa R, Guzmán S et al (2005) Biochemical characterization of the glucose kinase from Streptomyces coelicolor compared to Streptomyces peucetius var. caesius. Res Microbiol 156:361–366. doi:10.1016/j.resmic.2004.11.001

    Article  CAS  Google Scholar 

  • Karmakar B, Vohra RM, Nandanwar H et al (2000) Rapid degradation of ferulic acid via 4-vinylguaiacol and vanillin by a newly isolated strain of Bacillus coagulans. J Biotechnol 80:195–202

    Article  CAS  Google Scholar 

  • Kiiskinen L-L, Rättö M, Kruus K (2004) Screening for novel laccase-producing microbes. J Appl Microbiol 97:640–646. doi:10.1111/j.1365-2672.2004.02348.x

    Article  CAS  Google Scholar 

  • Krings U, Berger RG (1998) Biotechnological production of flavours and fragrances. Appl Microbiol Biotechnol 49:1–8

    Article  CAS  Google Scholar 

  • Lavuda IM, Goers SK, Keon KA (1992) Bioconversion process for the production of vanillin. US Patent 5128253

  • Lee IY, Volm TG, Rosazza JPN (1998) Decarboxylation of ferulic acid to 4-vinylguaiacol by Bacillus pumilus in aqueous-organic solvent two-phase systems. Enzyme Microb Technol 23:261–266. doi:10.1016/S0141-0229(98)00044-1

    Article  CAS  Google Scholar 

  • Li X, Yang J, Li X et al (2008) The metabolism of ferulic acid via 4-vinylguaiacol to vanillin by Enterobacter sp. P6-4 isolated from Vanilla root. Process Biochem 43:1132–1137. doi:10.1016/j.procbio.2008.06.006

    Article  CAS  Google Scholar 

  • Mathew S, Abraham TE, Sudheesh S (2007) Rapid conversion of ferulic acid to 4-vinyl guaiacol and vanillin metabolites by Debaryomyces hansenii. J Mol Catal B Enzym 44:48–52. doi:10.1016/j.molcatb.2006.09.001

    Article  CAS  Google Scholar 

  • Max B, Carballo J, Cortés S, Domínguez JM (2012) Decarboxylation of ferulic acid to 4-vinyl guaiacol by Streptomyces setonii. Appl Biochem Biotechnol 166:289–299. doi:10.1007/s12010-011-9424-7

    Article  CAS  Google Scholar 

  • Muheim A, Lerch K (1999) Towards a high-yield bioconversion of ferulic acid to vanillin. Appl Microbiol Biotechnol 51:456–461. doi:10.1007/s002530051416

    Article  CAS  Google Scholar 

  • Muheim A, Müller B, Münch T, Wetli M (1998) Process for the production of vanillin. ES Patent 2258290

  • Priefert H, Rabenhorst J, Steinbüchel A (2001) Biotechnological production of vanillin. Appl Microbiol Biotechnol 56:296–314. doi:10.1007/s002530100687

    Article  CAS  Google Scholar 

  • Rabenhorst J, Hopp R, Bying GS (1995) Process for the preparation of vainillin and suitable microorganism. EP Patent 0761817 B1

  • Ramachandra Rao S, Ravishankar G (2000) Review Vanilla flavour: production by conventional and biotechnological routes. J Sci Food Agric 80:289–304

    Article  Google Scholar 

  • Ramesh A, Sharma SK, Sharma MP et al (2014) Inoculation of zinc solubilizing Bacillus aryabhattai strains for improved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in Vertisols of central India. Appl Soil Ecol 73:87–96. doi:10.1016/j.apsoil.2013.08.009

    Article  Google Scholar 

  • Rosana-ani L, Skarlatos P, Dahl MK (1999) Putative contribution of glucose kinase from Bacillus subtilis to carbon catabolite repression (CCR): a link between enzymatic regulation and CCR? FEMS Microbiol Lett 171:89–96

    Article  CAS  Google Scholar 

  • Rosazza J, Huang Z, Dostal L et al (1995) Review: Biocatalytic transformations of ferulic acid: an abundant aromatic natural product. J Ind Microbiol 15:457–471

    Article  CAS  Google Scholar 

  • Salgado JM, Max B, Rodríguez-Solana R, Domínguez JM (2012) Purification of ferulic acid solubilized from agroindustrial wastes and further conversion into 4-vinyl guaiacol by Streptomyces setonii using solid state fermentation. Ind Crops Prod 39:52–61. doi:10.1016/j.indcrop.2012.02.014

    Article  CAS  Google Scholar 

  • Sanchez S, Demain AL (2002) Metabolic regulation of fermentation processes. Enzyme Microb Technol 31:895–906. doi:10.1016/S0141-0229(02)00172-2

    Article  CAS  Google Scholar 

  • Shivaji S, Chaturvedi P, Begum Z et al (2009) Janibacter hoylei sp. nov., Bacillus isronensis sp. nov. and Bacillus aryabhattai sp. nov., isolated from cryotubes used for collecting air from the upper atmosphere. Int J Syst Evol Microbiol 59:2977–2986. doi:10.1099/ijs.0.002527-0

    Article  CAS  Google Scholar 

  • Singh Y, Srivastava SK (2014) Performance improvement of Bacillus aryabhattai ITBHU02 for high-throughput production of a tumor-inhibitory L-asparaginase using a kinetic model based approach. J Chem Technol Biotechnol 89:117–127. doi:10.1002/jctb.4121

    Article  CAS  Google Scholar 

  • Singh Y, Gundampati RK, Jagannadham MV, Srivastava SK (2013) Extracellular L-asparaginase from a protease-deficient Bacillus aryabhattai ITBHU02: purification, biochemical characterization, and evaluation of antineoplastic activity in vitro. Appl Biochem Biotechnol 171:1759–1774. doi:10.1007/s12010-013-0455-0

    Article  CAS  Google Scholar 

  • Solís S, Flores ME, Huitrón C (1990) Isolation of endopolygalacturonase hyperproducing mutants of Aspergillus sp. CH-Y-1043. Biotechnol Lett 12:751–756. doi:10.1007/BF01024734

    Article  Google Scholar 

  • Stülke J, Willen W (2000) Regulation of carbon catabolism in Bacillus species. Annu Rev Microbioly 54:849–880

    Article  Google Scholar 

  • Tanamool V, Imai T, Danvirutai P, Kaewkannetra P (2013) An alternative approach to the fermentation of sweet sorghum juice into biopolymer of poly-β-hydroxyalkanoates (PHAs) by newly isolated, Bacillus aryabhattai PKV01. Biotechnol Bioprocess Eng 18:65–74. doi:10.1007/s12257-012-0315-8

    Article  CAS  Google Scholar 

  • Tiemann F, Haarmann W (1874) Ueber das Coniferin und seine Umwandlung in das aromatische Princip der Vanille. Ber Dtsch Chem Ges 7:608–623. doi:10.1002/cber.187400701193

    Article  Google Scholar 

  • Tindall BJ, Sikorski J, Smibert RA, Krieg NR (2007) Phenotypic characterization and the principles of comparative systematics. In: Reddy A (ed) Methods for general and molecular microbiology, 3rd edn. American Society for Microbiology, Washington, pp 330–393

    Google Scholar 

  • Topakas E, Kalogeris E, Kekos D et al (2003) Bioconversion of ferulic acid into vanillic acid by the thermophilic fungus Sporotrichum thermophile. LWT Food Sci Technol 36:561–565. doi:10.1016/S0023-6438(03)00060-4

    Article  CAS  Google Scholar 

  • Verma DK, Hasan SH, Singh DK et al (2014) Enhanced biosorptive remediation of hexavalent chromium using chemotailored biomass of a novel soil isolate Bacillus aryabhattai ITBHU02: process variables optimization through artificial neural network linked genetic algorithm. Ind Eng Chem Res 53:3669–3681. doi:10.1021/ie404266k

    Article  CAS  Google Scholar 

  • Yoon S-H, Li C, Kim J-E et al (2005) Production of vanillin by metabolically engineered Escherichia coli. Biotechnol Lett 27:1829–1832. doi:10.1007/s10529-005-3561-4

    Article  CAS  Google Scholar 

  • Zamzuri NA, Abd-Aziz S, Rahim RA et al (2014) A rapid colorimetric screening method for vanillic acid and vanillin-producing bacterial strains. J Appl Microbiol 116:903–910. doi:10.1111/jam.12410

    Article  CAS  Google Scholar 

  • Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214. doi:10.1089/10665270050081478

    Article  CAS  Google Scholar 

  • Zheng P, Li H, Wang X et al (2012) Amycolatopsis sp. strain and methods of using the same for vanillin production. US 2013/0115667 A1

Download references

Acknowledgments

We are grateful to the Spanish Ministry of Economy and Competitiveness for the financial support for this study (Project CTQ2015-71436-C2-1-R), which also received partial financing from the FEDER funds of the European Union, and to the Spanish Ministry of Education, Culture and Sports for Alicia Pérez Paz’s FPI. We greatly appreciate the help of Amparo Ruvira Garrigues, Ph.D., from CECT (Spanish Type Culture Collection), for work on sequencing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Manuel Domínguez.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paz, A., Carballo, J., Pérez, M.J. et al. Bacillus aryabhattai BA03: a novel approach to the production of natural value-added compounds. World J Microbiol Biotechnol 32, 159 (2016). https://doi.org/10.1007/s11274-016-2113-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-016-2113-5

Keywords

Navigation