Skip to main content
Log in

Characterization and potential of plant growth promoting rhizobacteria isolated from native Andean crops

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bacteria isolated from soil and rhizosphere samples collected in Peru from Andean crops were tested in vitro and in vivo to determine their potential as plant growth promoters and their ability to induce systemic resistance to Alternaria alternata in tomato plants. The isolates were identified by sequencing their 16S ribosomal RNA gene. Test for phosphate solubilization, and indolacetic acid were also carried out, together with in vitro antagonism assays in dual cultures towards the plant pathogens Fusarium solani, A. alternata and Curvularia lunata. The three most promising isolates (Pa15, Ps155, Ps168) belonged to the genus Pseudomonas. Further assays were carried out with tomato plants to assess their plant protection effect towards A. alternata and as growth promoters. Inoculation of tomato seeds with all isolates significantly enhanced seed germination, plantlets emergence and plant development. Bacterial inoculation also reduce damage level caused by A. alternata. The expression levels of three tomato genes involved in the jasmonate (AOS), ethylene responsive (ERF-2) and pathogenesis related (PR-P2) pathways were determined in plants challenged with A. alternata, alone or with each bacterial isolate, respectively. Results showed that at 24 h after infection, in absence of the pathogen, the expression level of the tested genes was very low. The presence of A. alternata alone and in combination with bacteria increased the transcripts of all genes. Data showed a potential of best performing isolate Ps168 to sustain tomato plants nutrition and activate defense-related genes for protection by pathogenic fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adesemoye AO, Egamberdieva D (2013) Beneficial effects of plant growth-promoting rhizobacteria on improved crop production: prospects for developing economies. In: Maheshwari DK, Saraf M, Aeron A (eds) Bacteria in agrobiology: crop productivity. Springer, Berlin, pp 45–63

    Chapter  Google Scholar 

  • Adesemoye AO, Kloepper JW (2009) Plant-microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12

    Article  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  • Ben Farhat M, Farhat A, Bejar W, Kammoun R, Bouchaala K, Fourati A, Antoun H, Bejar S, Chouayekh H (2009) Characterization of the mineral phosphate solubilizing activity of Serratia marcescens CTM 50650 isolated from the phosphate mine of Gafsa. Arch Microbiol 191:815–824

    Article  CAS  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LM (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Gen Mol Biol 35(Suppl):1044–1051

    Article  CAS  Google Scholar 

  • Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  Google Scholar 

  • Bhakthavatchalu S, Shivakumar S, Sullia SB (2013) Characterization of multiple plant growth promotion traits of Pseudomonas aeruginosa FP6, a potential stress tolerant bio-control agent. Ann Biol Res 4:214–223

    CAS  Google Scholar 

  • Calvo P, Ormeño-Orillo E, Martínez-Romero E, Zúñiga-Dávila D (2010) Characterization of Bacillus isolates of potato rhizosphere from Andean of Peru and their potential PGPR characteristics. Braz J Microbiol 41:899–906

    Article  Google Scholar 

  • Castillo P, Molina R, Andrade A, Vigliocco A, Alemano S, Cassán FD (2015) Phytohormones and other plant growth regulators produced by PGPR: the genus Azospirillum. In: Cassán FD et al (eds) Handbook for Azospirillum. Springer, Cham, pp 115–138

    Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Dimkpa CO, Merten D, Svatos A, Büchel G, Kothe E (2009) Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol Biochem 41:154–162

    Article  CAS  Google Scholar 

  • Doran JW, Zeiss MR (2000) Soil health and sustainability: managing the biotic component of soil quality. Appl Soil Ecol 15:3–11

    Article  Google Scholar 

  • Durairaj C, Karthikeyan G, Ganapathy N, Karuppuchamy P (2010) Predisposition effect of Liriomyza trifolii damage to Alternaria leaf spot disease in tomato. Karnataka J Agric Sci 23:161–162

    Google Scholar 

  • Edi-Premono M, Moawad AM, Vlek PLG (1996) Effect of phosphate-solubilizing Pseudomonas putida on the growth of maize and its survival in the rhizosphere. Indones J Crop Sci 11:13–23

    Google Scholar 

  • Flores L, Ogata-Gutiérrez K, Zúñiga-Dávila D (2013) Efecto de la inoculación foliar y radicular de bacterias PGPR en el cultivo de aguaymanto (Physalis peruviana). IIIBEMPA-XXVI Relar-XIV ReSefin. Microorganisms for future agriculture, Sevilla, p. 291

    Google Scholar 

  • French ER, Hebert TT (1982) Métodos de Investigación Fitopatológica. Instituto Interamericano de Cooperación para la Agricultura, San José, pp 168–185

    Google Scholar 

  • Glickmann E, Dessaux Y (1995) A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61:793–796

    CAS  Google Scholar 

  • Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2:1127500

    Google Scholar 

  • Halder AK, Mishra AK, Bhattacharyya P, Chakrabartty PK (1990) Solubilization of rock phosphate by Rhizobium and Bradyrhizobium. J Gen Appl Microbiol 36:81–92

    Article  CAS  Google Scholar 

  • Hernandez A (2002) Studies of some microbial genera associated with different varieties of wheat (Triticum aestivum L.) on the ground Ferraliticum Rojo from San Jose de las Lajas. Trop crops 23:15–18

    Google Scholar 

  • Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152

    Article  CAS  Google Scholar 

  • Idris HA, Labuschagne N, Korsten L (2007) Screening rhizobacteria for biological control of Fusarium root and crown rot of sorghum in Ethiopia. Biol Control 40:97–106

    Article  Google Scholar 

  • Jones D, Hinsinger P (2008) The rhizosphere: complex by design. Plant Soil 312:1–6

    Article  CAS  Google Scholar 

  • Kavroulakis N, Ehaliotis C, Ntougias S, Zervakis GI, Papadopoulou KK (2005) Local and systemic resistance against fungal pathogens of tomato plants elicited by a compost derived from agricultural residues. Physiol Mol Plant Pathol 66:163–174

    Article  Google Scholar 

  • Kavroulakis N, Ntougias S, Besi MI, Katsou P, Damaskinou A, Ehaliotis C, Zervakis GI, Papadopoulou KK (2010) Antagonistic bacteria of composted agro-industrial residues exhibit antibiosis against soil-borne fungal plant pathogens and protection of tomato plants from Fusarium oxysporum f.sp. radicis-lycopersici. Plant Soil 333:233–247

    Article  CAS  Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62(Pt 3):716–721

    Article  CAS  Google Scholar 

  • Kloepper JW, Lifshiftz R, Zablotowicz RM (1989) Free living bacterial inoculation for enhancing crop productivity. Trends Biotechnol 7:39–44

    Article  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  Google Scholar 

  • Leveau JH, Lindow SE (2005) Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl Environ Microbiol 71:2365–2371

    Article  CAS  Google Scholar 

  • Memelink J (2009) Regulation of gene expression by jasmonate hormones. Phytochemistry 70:1560–1570

    Article  CAS  Google Scholar 

  • Mmbaga MT, Shi A, Kim MS (2011) Identification of Alternaria alternata as a causal agent for leaf blight in syringa species. Plant Pathol J 27:120–127

    Article  CAS  Google Scholar 

  • Moreno-Ramírez L, González-Mendoza D, Cecena-Duran C, Grimaldo-Juarez O (2015) Molecular identification of phosphate solubilizing native bacteria isolated from the rhizosphere of Prosopis glandulosa in Mexicali valley. Gen Mol Res 14:2793–2798

    Article  Google Scholar 

  • Mur L, Kenton P, Atzorn R, Miersch O, Wasternack C (2006) The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol 140:249–262

    Article  CAS  Google Scholar 

  • Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270

    Article  CAS  Google Scholar 

  • Ogata-Gutiérrez K, Arellano C, Zúñiga-Dávila D (2008) Efecto de diferentes bacterias aisladas de rizósfera de Caesalpina spinosa en la germinación de diferentes especies vegetales culivados. Zonas áridas 12:137–153

    Google Scholar 

  • Oide S, Bejai S, Staal J, Guan N, Kaliff M, Dixelius C (2013) A novel role of PR2 in abscisic acid (ABA) mediated, pathogen-induced callose deposition in Arabidopsis thaliana. New Phytol 200:1187–1199

    Article  CAS  Google Scholar 

  • Ortiz-Ojeda P, Ogata-Gutiérrez K, Zúñiga-Dávila D (2017) Evaluation of plant growth promoting activity and heavy metal tolerance of psychrotrophic bacteria associated with maca (Lepidium meyenii Walp.) rhizosphere. AIMS Microbiol 3:279–292

    Article  Google Scholar 

  • Overmann J, Lepleux C (2016) Marine bacteria and archae: diversity, adaptations and culturability. In: Stal LJ, Cretoiu MS (eds) The marine microbiome. An untapped source of biodiversity and biotechnological potential. Springer, Cham, pp 21–56

    Google Scholar 

  • Park YG, Mun BG, Kang SM, Hussain A, Shahzad R, Seo CW, Kim AY, Lee SU, Oh KY, Lee DY, Lee IJ, Yun BW (2017) Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. PLoS ONE 12:e0173203

    Article  Google Scholar 

  • Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA (2014) Induced systemic resistance by beneficial microbes. Ann Rev Phytopath 52:347–375

    Article  CAS  Google Scholar 

  • Porcel R, Zamarreño ÁM, García-Mina JM, Aroca R (2014) Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants. BMC Plant Biol 14:36

    Article  Google Scholar 

  • Pu X, Xie B, Li P, Mao Z, Ling J, Shen H, Zhang J, Huang N, Lin B (2014) Analysis of the defence-related mechanism in cucumber seedlings in relation to root colonization by nonpathogenic Fusarium oxysporum CS-20. FEMS Microbiol Lett 355:142–151

    Article  CAS  Google Scholar 

  • Rainey PB (1999) Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ Microbiol 1:243–257

    Article  CAS  Google Scholar 

  • Ramazan C, Akmakc I, Figen A, Adil A, Fikrettin S, Ahin BC (2005) Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. BioChemistry 38:1482–1487

    Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28:897–906

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  Google Scholar 

  • Sarvani B, Subhash R (2013) In vitro Screening of native Bacillus isolates for plant growth promoting attributes. Int J Bio-res Stress Manag 4(2):298–303

    Google Scholar 

  • Sasirekha B, Srividya S (2016) Siderophore production by Pseudomonas aeruginosa FP6, a biocontrol strain for Rhizoctonia solani and Colletotrichum gloeosporioides causing diseases in chilli. Agric Nat Resour 50:250–256

    Google Scholar 

  • Seo PJ, Lee AK, Xiang F, Park CM (2008) Molecular and functional profiling of Arabidopsis pathogenesis-related genes: insights into their roles in salt response of seed germination. Plant Cell Physiol 49:334–344

    Article  CAS  Google Scholar 

  • Sharm A, Shankhdhar D, Sharma A, Shankdhar SC (2014) Growth promotion of the rice genotypes by pgprs isolated from rice rhizosphere. J Soil Sci Plant Nutr 14:505–517

    Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  CAS  Google Scholar 

  • Sun JQ, Jiang HL, Li CY (2011) Systemin/Jasmonate-mediated systemic defense signaling in tomato. Mol Plant 4:607–615

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  Google Scholar 

  • Thomashow LS, Weller DM (1990) Application of fluorescent Pseudomonas to control root disease of wheat and some mechanisms of disease suppression. In: Hornby D (ed) Biological control of soil borne pathogens. CAB International, Wallingford, pp 109–122

    Google Scholar 

  • Tiwari S, Prasad V, Chauhan PS, Lata C (2017) Bacillus amyloliquefaciens confers tolerance to various abiotic stresses and modulates plant response to phytohormones through osmoprotection and gene expression regulation in rice. Front Plant Sci 8:1510

    Article  Google Scholar 

  • Tucci M, Ruocco M, De Masi L, De Palma M, Lorito M (2011) The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Mol Plant Pathol 12:341–354

    Article  CAS  Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356

    Article  Google Scholar 

  • Verhagen BW, Trotel-Aziz P, Couderchet M, Höfte M, Aziz A (2010) Pseudomonas spp.-induced systemic resistance to Botrytis cinerea is associated with induction and priming of defence responses in grapevine. J Exp Bot 61:249–260

    Article  CAS  Google Scholar 

  • Vestergård M, Bjørnlund L, Henry F, Rønn R (2007) Decreasing prevalence of rhizosphere IAA producing and seedling root growth promoting bacteria with barley development irrespective of protozoan grazing regime. Plant Soil 295:115–125

    Article  Google Scholar 

  • Walters D, Walsh D, Newton A, Lyon G (2005) Induced resistance for plant disease control: maximizing the efficacy of resistance elicitors. Phytopathology 95:1368–1373

    Article  CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    Article  CAS  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  • Yasmin H, Bano A (2011) Isolation and characterization of phosphate solubilizing bacteria from rhizosphere soil of weeds of khewra salt range and attock. Pak J Bot 43:1663–1668

    Google Scholar 

  • Zúñiga-Dávila D, Tolentino J, García M. Pérez W, Matsubara M, Ogata-Gutiérrez K (2011) Characterization of rhizospheric bacteria isolated from maca (Lepidium meyenii W.) in the highlands of Junin-Peru. In: Microorganisms in Industry and Environment. From scientific and industrial research to consumer products. A. Mendez-Vilas (Ed). Formatex Research Center, Badajoz, pp 21–25

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Programa Nacional de Innovación para la Competitividad y Productividad (Innóvate Perú), under the contract 447-PNICP-ECIP-2014, FONDECYT-145 Project 2013 and FONDECYT-105 Project 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariella M. Finetti-Sialer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogata-Gutiérrez, K., Chumpitaz-Segovia, C., Lirio-Paredes, J. et al. Characterization and potential of plant growth promoting rhizobacteria isolated from native Andean crops. World J Microbiol Biotechnol 33, 203 (2017). https://doi.org/10.1007/s11274-017-2369-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-017-2369-4

Keywords

Navigation