Skip to main content
Log in

Genetic diversity and antimicrobial activity of lactic acid bacteria in the preparation of traditional fermented potato product ‘tunta’

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Fermentation microorganisms, lactic acid bacteria (LAB) and yeast from 12 samples of tunta production chain were quantified, from the native potatoes used by the process fermentation of potatoes in the river up to the final product. During fermentation, the LAB population steadily increased from 3 to 4 to 8 log CFU/g during the first 8 days in the river and the yeast population increased from 2 to 3 to 3–4 log CFU/g. Overall, 115 LAB strains were isolated using a culture-dependent method. Molecular techniques and 16S rRNA gene sequencing enabled the identification of native species. In LAB isolates, members of the Lactobacillaceae (64%), Leuconostocaceae (9%) and Enterococcaceae (2%) families were identified. The most prevalent LAB species in the tunta production chain was Lactobacillus curvatus, followed by Leuconostoc mesenteroides and Lactobacillus sakei, Lactobacillus brevis and Enterococcus mundtii were also present. Only 13 LAB strains showed anti-listerial activity, and one of them, identified as En. mundtii DSM 4838T [MG031213], produced antimicrobial compounds that were determined to be proteins after treatment with proteolytic enzymes. Based on these results, we suggest that traditional fermented product-derived LAB strains from specific environments could be selected and used for technological application to control pathogenic bacteria and naturally protect food from post-harvest deleterious microbiota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Adigüzel G, Atasever M (2009) Phenotypic and genotypic characterization of lactic acid bacteria isolated from Turkish dry fermented sausage. Rom Biotechnol Lett 14(1):4130–4138

    Google Scholar 

  • Agrawal R (2005) Probiotics: an emerging food supplement with health benefits. Food Biotechnol 19:227–246

    Article  CAS  Google Scholar 

  • Ahmadova A, Todorov S, Hadji-Sfaxi I, Choiset Y, Rabesona H, Messaoudi S, Kuliyev A, Franco B (2013) Antimicrobial and antifungal activities of Lactobacillus curvatus strain isolated from homemade Azerbaijani cheese. Anaerobe 20:42–49

    Article  CAS  PubMed  Google Scholar 

  • Altschul S, Gish W, Miller W, Myers E, Lipman D (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  • Benkerroum N. Oubel H. Zahar M. Dlia S, Filali-Maltouf A (2000) Isolation of a bacteriocin-producing Lactococcus lactis subsp. lactis and application to control Listeria monocytogenes in Moroccan Jben. J Appl Microbiol 89:960–969

    Article  CAS  PubMed  Google Scholar 

  • Blanco M, Epifane M (2007) Purificación de bacteriocinas producidas por Lactobacillus curvatus CRL705 para su uso en envases de productos cárnicos. Sexta Jornada de Desarrollo e Innovación Tecnológica 2007. INTI

  • Casaburi A, Di Monaco R, Cavella S, Toldrá F, Ercolini D, Villani F (2008) Proteolytic and lipolytic starter cultures and their effect on traditional fermented sausages ripening and sensory traits. Food Microbiol 25:335–347. https://doi.org/10.1016/j.fm.2007.10.006

    Article  CAS  PubMed  Google Scholar 

  • Castellano P, Aristoy MC, Sentandreu MA, Vignolo G, Toldrá F (2012) Lactobacillus sakei CRL1862 improves safety and protein hydrolysis in meat systems. J Appl Microbiol 113:1407–1416

    Article  CAS  PubMed  Google Scholar 

  • Chaillou S, Champomier-Vergès MC, Cornet M, Crutz-Le Coq AM, Dudez AM, Martin V, Beaufils S, Darbon-Rongère E, Bossy R, Loux V, Zagorec M (2005) The complete genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei 23K. Nat Biotechnol 23:1527–1533

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekara A, Joshepkumar TJ (2016) Roots and tuber crops as functional foods: a review on phytochemical constituents and their potential health benefits. Int J Food Sci. https://doi.org/10.1155/2016/3631647

    Article  PubMed  PubMed Central  Google Scholar 

  • Christensen JE, Dudley EG, Pederson JA, Steel JL (1999) Peptidases and amino acid catabolism in lactic acid bacteria. Anton Leeuw 76:217–246

    Article  CAS  Google Scholar 

  • De Vuyst L, Foulquié M, Revets H (2003) Screening for enterocins and detection of hemolysin and vancomycin resistance in enterococci of different origins. Int J Food Microbiol 84:299–318

    Article  CAS  PubMed  Google Scholar 

  • De Vuyst L, Camu N, De Winter T, Vandemeulebroecke K, Van De Pere V, Vancanneyt M, De Vos P, Cleenwerck I (2008) Validation of the (GTG)5-rep-PCR fingerprinting technique for rapid classification and identification of acetic acid bacteria, with a focus on isolates from Ghanaian fermented cocoa beans. Int J Food Microbiol 125:79–90

    Article  CAS  PubMed  Google Scholar 

  • Du Toit M, Franz CMAP, Dicks LMT, Holzapfel WH (2000) Preliminary characterization of bacteriocins produced by Enterococcus faecium and Enterococcus faecalis isolated from pig faeces. J Appl Microbiol 88:482–494

    Article  CAS  PubMed  Google Scholar 

  • Fadda S, Lopez C, Vignolo G (2010) Role of lactic acid bacteria during meat conditioning and fermentation: peptides generated as sensorial and hygienic biomarkers. Meat Sci 86:66–79

    Article  CAS  PubMed  Google Scholar 

  • Ferreira A, Canal N, Morales D, Fuentefria DB, Corção G (2007) Characterization of enterocins produced by Enterococcus mundtii isolated from humans feces. Braz Arch Biol Technol 50:249–258. https://doi.org/10.1590/S1516-89132007000200010

    Article  Google Scholar 

  • Fox GE, Wisotzkey JD, Jurtshuk P (1992) How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170. https://doi.org/10.1099/00207713-42-1-166

    Article  CAS  PubMed  Google Scholar 

  • García-Cayuela T, Korany AM, Bustos I, de Cadiñanos LPG, Requena T, Peláez C, Martínez-Cuesta C (2014) Adhesion abilities of dairy Lactobacillus plantarum strains showing an aggregation phenotype. Food Res Int 57:44–50. https://doi.org/10.1016/j.foodres.2014.01.010

    Article  CAS  Google Scholar 

  • Gómez NC, Ramiro JM, Quecan BX, de Melo Franco BD (2016) use of potential probiotic lactic acid bacteria (LAB) biofilms for the control of Listeria monocytogenes, Salmonella typhimurium and Escherichia coli O157:H7 biofilms formation. Front Microbiol 10:863. https://doi.org/10.3389/fmicb.2016.00863

    Article  Google Scholar 

  • Gratia A (1946) Techniques sélectives pour la recherche systématique des germes antibiotiques. CR Soc Biol Paris 140:1053–1055

    CAS  Google Scholar 

  • Harris LJ, Daeschel MA, Stiles ME, Klaenhammer TR (1989) Antimicrobial activity of lactic acid bacteria against Listeria monocytogenes. J Food Prot 52:384–387

    Article  Google Scholar 

  • Hebert E, Saavedra L, Taranto M, Mozzi F, Magni C, Sesma F, Vignolo G, Raya R (2012) Genome sequence of the bacteriocin-producing Lactobacillus curvatus strain CRL705. J Bacteriol 194:538–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Hu R, Pray C, Qiao F, Rozelle S (2003) Biotechnology as an alternative to chemical pesticides: a case study of Bt cotton in China. J Agric Econ 29:55–67

    Article  Google Scholar 

  • Hüfner E, Markieton T, Chaillou S, Crutz-Le Coq A, Zagorec M, Hertel C (2007) Identification of Lactobacillus sakei genes induced during meat fermentation and their role in survival and growth. Appl Environ Microbiol 73:2522–2531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jennes W, Dicks LMT, Verwoerd DJ (2000) Enterocin 012, a bacteriocin produced by Enterococcus gallinarum isolated from the intestinal tract of ostrich. J Appl Microbiol 88:349–357

    Article  CAS  PubMed  Google Scholar 

  • Koo O, Eggleton M, Bryan CAO, Crandall PG, Ricke SC (2012) Antimicrobial activity of lactic acid bacteria against Listeria monocytogenes on frankfurters formulated with and without lactate/diacetate. Meat Sci 92:533–537

    Article  PubMed  Google Scholar 

  • Kuttner AG (1966) Production of bacteriocines by group A streptococci with special reference to the nephritogenic types. J Exp Med 124:279–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milillo SR, Story RS, Pak D, Bryan CAO, Crandall PG, Ricke SC (2013) Antimicrobial properties of three lactic acid bacterial cultures and their cell free supernatants against Listeria monocytogenes. J Environ Sci Health 48:63–68

    Article  CAS  Google Scholar 

  • Müller T, Ulrich A, Ott EM, Müller M (2001) Identification of plant-associated Enterococci. J Appl Microbiol 91:268–278. https://doi.org/10.1046/j.1365-2672.2001.01373.x

    Article  PubMed  Google Scholar 

  • Najjari A, Ouzari H, Boudanous A, Zagorec M (2008) Method for reliable isolation of Lactobacillus sakei strains originating from Tunisian seafood and meat products. Int J Food Microbiol 121:342–351. https://doi.org/10.1016/j.ijfoodmicro.2007.11.045

    Article  CAS  PubMed  Google Scholar 

  • Nandan A, Gaurav A, Pandey A, Nampoothiri KM (2010) Arginine specific aminopeptidase from Lactobacillus brevis. Braz Arch Biol Technol 53:1443–1450. https://doi.org/10.1590/S1516-89132010000600021

    Article  CAS  Google Scholar 

  • Olive DM, Bean P (1999) Principles and applications of methods for DNA based typing of microbial organisms. J Clin Microbiol 37:1661–1669

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ouled-Haddar H, Idoui T, Sifour M, Guezira M, Bouthabet M (2012) Isolation, characterization and microencapsulation of probiotic Lactobacillus curvatus G7 from chicken crop. The Online J Sci Technol 2:1–6

    Google Scholar 

  • Panda SH, Ray RC (2007) Lactic acid fermentation of beta-carotene rich sweet potato (Ipomea batatas L.) into Lacto juice. Plant Foods Hum Nutr 62:65–70

    Article  CAS  PubMed  Google Scholar 

  • Pringsulaka O, Thongngam N, Suwannasai N, Atthakor W, Pothivejkul K, Rangsiruji A (2012) Partial characterization of bacteriocins produced by lactic acid bacteria isolated from Thai fermented meat and fish products. Food Control 23:547–551

    Article  CAS  Google Scholar 

  • Quirasco M, Lopez-Munguia A, Remaud-Simeon M, Monsan P, Farres A (1999) Induction and transcription studies of the dextransucrase gene in Leuconostoc mesenteroides NRRL B-512F. Appl Environ Microbiol 65:5504–5509

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rachman C, Kabadjova P, Prévost H, Dousset X (2003) Identification of Lactobacillus alimentarius and Lactobacillus farciminis with 16S-23S rDNA intergenic spacer region polymorphism and PCR amplification using species-specific oligonucleotide. J Appl Microbiol 95:1207–1216. https://doi.org/10.1046/j.1365-2672.2003.02117.x

    Article  CAS  PubMed  Google Scholar 

  • Ray RC, Ward OP (2006) Post harvest microbial biotechnology of tropical root and tuber crops. In: Ray RC, Ward OP (ed) Microbial biotechnology in horticulture, vol 1. Science Publishers, Enfield, pp 345–396

    Chapter  Google Scholar 

  • Richards M, Macrae R (1964) The significance of the use of hops in regard to the biological stability of beer. II. The development of resistance to hop resins by strains of lactobacilli. J Inst Brew 70:484–488

    Article  Google Scholar 

  • Rodríguez O, Hanssen H (2007) Obtención de dextrano y fructosa, utilizando residuos agroindustriales con la cepa Leuconostoc mesenteroides NRRL B512-F. Rev EIA Esc Ing Antioq 7:159–172. http://www.scielo.org.co/pdf/eia/n7/n7a15.pdf. Accessed 04 Mar 2015

  • Samelis J, Kakouri A, Georgiadou KG, Metaxopoulos J (1998) Evaluation of the extent and type of bacterial contamination at different stages of processing of cooked ham. J Appl Microbiol 84:649–660

    Article  CAS  PubMed  Google Scholar 

  • Smita H, Parmanick PM, Ray RC (2007) Lactic acid fermentation of sweet potato (Ipomea batatas L.) into pickles. J Food Process Preserv 31:83–107

    Article  Google Scholar 

  • Snel J, Marco M, Kingma F, Noordman W, Rademaker J, Kleerebezem M (2011) Competitive selection of lactic acid bacteria that persist in the human oral cavity. Appl Environ Microbiol 77:8445–8450. https://doi.org/10.1128/AEM.06043-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stiles ME (1996) Biopreservation by lactic acid bacteria. Anton Leeuw 70:331–345

    Article  CAS  Google Scholar 

  • Todorov SD, Dicks LMT (2005) Production of bacteriocin ST33LD, produced by Leuconostoc mesenteroides subsp. mesenteroides, as recorded in the presence of different medium components. World J Microbiol Biotechnol 21:1585–1590. https://doi.org/10.1007/s11274-005-8122-4

    Article  CAS  Google Scholar 

  • Van Reenen CA, Dicks LMT, Chikindas ML (1998) Isolation, purification and partial characterization of plantaricin 423, a bacteriocin produced by Lactobacillus plantarum. J Appl Microbiol 84:1131–1137

    Article  PubMed  Google Scholar 

  • Vaz-velho M, Fonseca F, Silva M, Gibbs P (2001) Is Listeria innocua 2030c, a tetracycline-resistant strain, a suitable marker for replacing L. monocytogenes in challenge studies with cold-smoked fish? Food Control 12:361–364. https://doi.org/10.1016/S0956-7135(01)00029-9

    Article  Google Scholar 

  • Versalovic J, Koeuth T, Lupski J (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19:6823–6831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Versalovic J, Schneider M, De Bruijn FJ, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cel Biol 5:25–40

    CAS  Google Scholar 

  • Vignolo G, Palacios J, Farías ME, Sesma F, Schillinger U, Holzapfel W, Olliver G (2000) Combined effect of bacteriocins on the survival of various Listeria species in broth and meat system. Current Microbiol 41:410–416

    Article  CAS  PubMed  Google Scholar 

  • Xiraphi N, Georgalaki M, Van Driessche G, Devreese B, Van Beeumen J, Tsakalidou E (2006) Purification and characterization of curvaticin L442, a bacteriocin produced by Lactobacillus curvatus L442. Anton Leeuw 89:19–26

    Article  CAS  Google Scholar 

  • Yaakoubi K, Benkerroum N, Wiorowski F, Sanson F, Haydersah J, Chevallier I (2009) Development of a multiwell antagonistic activity assay for the detection of bacteriocin production by lactic acid bacteria. J Rapid Methods Autom Microbiol 17:32–45

    Article  CAS  Google Scholar 

  • Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang GM, Holley RA (1999) Development and PFGE monitoring of dominance among spoilage lactic acid bacteria from cured meats. Food Microbiol 16:633–644

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere gratitude to the Consorcio ‘Los Aymaras’ (Ilave, Puno, Peru) for the facilities provided for sampling and to the Centro de Referencia para Lactobacilos - CERELA - CONICET (San Miguel de Tucumán, Argentina) for strains provided. This research was supported by the Programa Nacional de Innovación para la Competitividad y Productividad (Innovate Perú), under the contract N° 223-FINCyT-IA-2013 and Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica (FONDECYT), research project PROCYT N° 316-2011-CONCYTEC-OAJ from Peru.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena R. Ramos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos, E.R., Santos, R.A., Velázquez, E. et al. Genetic diversity and antimicrobial activity of lactic acid bacteria in the preparation of traditional fermented potato product ‘tunta’. World J Microbiol Biotechnol 34, 144 (2018). https://doi.org/10.1007/s11274-018-2525-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-018-2525-5

Keywords

Navigation