Skip to main content
Log in

The genetic diversity and introgression of Juglans regia and Juglans sigillata in Tibet as revealed by SSR markers

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

While walnuts are grown worldwide, two species are predominantly cultivated in China, Juglans regia and Juglans sigillata. J. regia is a widespread species, while J. sigillata is an indigenous species mainly distributed in southwestern China. In Tibet, unique plateau climatic conditions and relatively low-intensity agriculture aid walnuts to preserve a great variety of genetic resources. Knowing the genetic diversity and genetic structure of walnut populations in Tibet is essential when planning genetic conservation and screening for superior germplasm resources. The objectives of this study were to reveal the genetic diversity and genetic structure of walnut populations in Tibet and to infer the relationship between two species, J. regia and J. sigillata, using 12 molecular markers. The results based on screening 209 walnut trees from nine populations showed that the level of polymorphism is moderately high. However, the number of rare alleles (allele frequency <0.05) was higher than that reported in previous studies. An analysis of molecular variance revealed that significant genetic variation existed both among populations of J. regia (10.25 %, p < 0.0001) and J. sigillata (11.07 %, p < 0.0001) and between the two species (7.91 %, p < 0.0001). A Bayesian approach divided the 209 walnut samples into two clusters and presented the differentiation pattern of these two species. The assignment analysis revealed the presence of J. regia × J. sigillata hybrids among the sampled individuals. The results suggest unique germplasm preservation among the walnut populations in Tibet and that introgression between J. regia and J. sigillata may account for the convoluted boundary between the two species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aradhya M, Potter D, Simon C (2004) Origin, evolution, and biogeography of Juglans: a phylogenetic perspective. V Int Walnut Symp 705:85–94

    Google Scholar 

  • Bagnoli F, Vendramin G, Buonamici A, Doulis A, Gonzalez-Martinez SC, La Porta N, Magri D, Raddi P, Sebastiani F, Fineschi S (2009) Is Cupressus sempervirens native in Italy? An answer from genetic and palaeobotanical data. Mol Ecol 18:2276–2286

    Article  CAS  PubMed  Google Scholar 

  • Balloux F, Lugon-Moulin N (2002) The estimation of population differentiation with microsatellite markers. Mol Ecol 11:155–165

    Article  PubMed  Google Scholar 

  • Bayazit S, Kazan K, Gulbitti S, Cevik V, Ayanoglu H, Ergul A (2007) AFLP analysis of genetic diversity in low chill requiring walnut (Juglans regia L.) genotypes from Hatay, Turkey. Sci Hortic 111:394–398

    Article  CAS  Google Scholar 

  • Christopoulos MV, Rouskas D, Tsantili E, Bebeli PJ (2010) Germplasm diversity and genetic relationships among walnut (Juglans regia L.) cultivars and Greek local selections revealed by Inter-Simple Sequence Repeat (ISSR) markers. Sci Hortic 125:584–592. doi:10.1016/j.scienta.2010.05.006

    Article  CAS  Google Scholar 

  • Ciarmiello LF, Pontecorvo G, Piccirillo P, Luca A, Carillo P, Kafantaris I, Woodrow P (2013) Use of nuclear and mitochondrial single nucleotide polymorphisms to characterize english walnut (Juglans regia L.) genotypes. Plant Mol Biol Rep 31:1116–1130. doi:10.1007/s11105-013 -0575-2

    Article  CAS  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dangl GS, Woeste K, Aradhya MK, Koehmstedt A, Simon C, Potter D, Leslie CA, McGranahan G (2005) Characterization of 14 microsatellite markers for genetic analysis and cultivar identification of walnut. J Am Soc Hortic Scie 130:348–354

    CAS  Google Scholar 

  • Duan S (1984) The investigation of walnut originating in Tibet. Acta Horticult Sinica 11:231–234 (in Chinese)

    Google Scholar 

  • Ebrahimi A, Fatahi R, Zamani Z (2011) Analysis of genetic diversity among some Persian walnut genotypes (Juglans regia L.) using morphological traits and SSRs markers. Sci Hortic 130:146–151. doi:10.1016/j.scienta.2011.06.028

    Article  CAS  Google Scholar 

  • Erturk U, Dalkilic Z (2011) Determination of genetic relationship among some walnut (Juglans regia L.) genotypes and their early-bearing progenies using RAPD markers. Rom Biotechnol Lett 16:5944–5952

    CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed Central  CAS  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fan ZY, Fang WL, Dong RQ (2005) Comparison and selection of pollinated Biyangpao walnut varieties. South China Fruits 34:58–59 (in Chinese)

    Google Scholar 

  • Fatahi R, Ebrahimi A, Zamani Z (2010) Characterization of some Iranians and foreign walnut genotypes using morphological traits and RAPD markers. Hortic Environ Biotechnol 51:51–60

    CAS  Google Scholar 

  • Fjellstrom RG, Parfitt DE (1994) Walnut (Juglans spp.) genetic diversity determined by restriction fragment length polymorphisms. Genome 37:690–700

    Article  CAS  PubMed  Google Scholar 

  • Fornari B, Malvolti ME, Taurchini D (2001) Isozyme and organellar DNA analysis of genetic diversity in natural/naturalised European and Asiatic walnut (Juglans regia L.) populations. Acta Horticult Sci 544:167–178

    CAS  Google Scholar 

  • Garza J, Williamson E (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318

    Article  CAS  PubMed  Google Scholar 

  • Glaubitz JC (2004) CONVERT: a user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Mol Ecol Notes 4:309–310

    Article  CAS  Google Scholar 

  • Gleeson SK (1982) Heterodichogamy in walnuts: inheritance and stable ratios. Evolution 36:892–902

    Article  Google Scholar 

  • Gunn BF, Aradhya M, Salick JM, Miller AJ, Yongping Y, Lin L, Xian H (2010) Genetic variation in walnuts (Juglans regia and J. sigillata; Juglandaceae): species distinctions, human impacts, and the conservation of agrobiodiversity in Yunnan, China. Am J Bot 97:660–671. doi:10.3732/ajb.0900114

    Article  PubMed  Google Scholar 

  • Jarvis DI, Brown AHD, Cuong PH, Collado-Panduro L, Latournerie-Moreno L, Gyawali S, Tanto T, Sawadogo M, Mar I, Sadiki M, Hue NTN, Arias-Reyes L, Balma D, Bajracharya J, Castillo F, Rijal D, Belqadi L, Rana R, Saidi S, Ouedraogo J, Zangre R, Rhrib K, Chavez JL, Schoen D, Sthapit B, De Santis P, Fadda C, Hodgkin T (2008) A global perspective of the richness and evenness of traditional crop-variety diversity maintained by farming communities. Proc Natl Acad Sci U S A 105:5326–5331. doi:10.1073/pnas.0803431105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Karimi R, Ershadi A, Vahdati K, Woeste K (2010) Molecular characterization of Persian walnut populations in Iran with microsatellite markers. Hortscience 45:1403–1406

    Google Scholar 

  • Kimura M, Crow JF (1964) The number of alleles that can be maintained in a finite population. Genetics 49:725–738

    PubMed Central  CAS  PubMed  Google Scholar 

  • Krüssmann G, Epp ME, Daniels GS (1985) Manual of cultivated broad-leaved trees & shrubs, Volume II, E-PRO. Timber Press/American Horticultural Society

  • Kuang KZ, Lu AM (1997) Flora of China, vol 21. Science Press, Beijing, China:33–36 (in Chinese)

  • Ladizinsky G (1985) Founder effect in crop-plant evolution. Econ Bot 39:191–199

    Article  Google Scholar 

  • Levene H (1949) On a matching problem arising in genetics. Ann Math Stat 20:91–94

    Article  Google Scholar 

  • Ma QG, Zhang JP, Pei D (2011) Genetic analysis of walnut cultivars in China using fluorescent amplified fragment length polymorphism. J Am Soc Hortic Sci 136:422–428

    CAS  Google Scholar 

  • Manning WE (1978) The classification within the Juglandaceae. Ann Mo Bot Gard 65:1058–1087

    Article  Google Scholar 

  • Martin MA, Mattioni C, Cherubini M, Taurchini D, Villani F (2010) Genetic diversity in European chestnut populations by means of genomic and genic microsatellite markers. Tree Genetics Genomes 6:735–744

    Article  Google Scholar 

  • Miller AJ, Schaal BA (2006) Domestication and the distribution of genetic variation in wild and cultivated populations of the Mesoamerican fruit tree Spondias purpurea L. (Anacardiaceae). Mol Ecol 15:1467–1480. doi:10.1111/j.1365-294×.2006.02834.×

    Article  CAS  PubMed  Google Scholar 

  • Mitchell-Olds T, Willis JH, Goldstein DB (2007) Which evolutionary processes influence natural genetic variation for phenotypic traits? Nat Rev Genet 8:845–856

    Article  CAS  PubMed  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106:283–292

    Article  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci U S A 70:3321–3323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oosterhout CV, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pollegioni P, Woeste K, Mugnozza GS, Malvolti ME (2009) Retrospective identification of hybridogenic walnut plants by SSR fingerprinting and parentage analysis. Mol Breed 24:321–335. doi:10.1007/s11032-009-9294-7

    Article  CAS  Google Scholar 

  • Pollegioni P, Woeste K, Olimpieri I, Marandola D, Cannata F, Malvolti ME (2011) Long-term human impacts on genetic structure of Italian walnut inferred by SSR markers. Tree Genetics Genomes 7:707–723. doi:10.1007/s11295-011-0368-4

    Article  Google Scholar 

  • Pollegioni P, Olimpieri I, Woeste KE, Simoni G, Gras M, Malvolti ME (2012) Barriers to interspecific hybridization between Juglans nigra L. and J. regia L species. Tree Genetics Genomes 9:291–305. doi:10.1007/s11295-012-0555-y

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    PubMed Central  CAS  PubMed  Google Scholar 

  • Takezaki N, Nei M, Tamura K (2010) POPTREE2: software for constructing population trees from allele frequency data and computing other population statistics with Windows interface. Mol Biol Evol 27:747–752

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Victory ER, Glaubitz JC, Rhodes OE, Woeste KE (2006) Genetic homogeneity in Juglans nigra (Juglandaceae) at nuclear microsatellites. Am J Bot 93:118–126

    Article  CAS  Google Scholar 

  • Wang H, Pei D, Gu RS, Wang BQ (2008) Genetic diversity and structure of walnut populations in central and southwestern China revealed by microsatellite markers. J Am Soc Hortic Sci 133:197–203

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Woeste K, Burns R, Rhodes O, Michler C (2002) Thirty polymorphic nuclear microsatellite loci from black walnut. J Hered 93:58–60

    Article  CAS  PubMed  Google Scholar 

  • Xi RT, Zhang YP (1996) Fruit trees of China. Walnut Chinese Forestry Press, Beijing (in Chinese)

    Google Scholar 

  • Yen F, Yang R, Mao J, Ye Z, Boyle T (1997) POPGENE, the Microsoft Windows-based user-friendly software for population genetic analysis of co-dominant and dominant markers and quantitative traits. Dept Renewable Resources, University of Alberta, Edmonton

Download references

Acknowledgments

The authors thank Zheng Weilie (Tibet Institute of Agriculture and Animal Husbandry, Linzhi) for logistical help and Dr. Ma Heping and Bianbaduoji (Tibet Institute of Agriculture and Animal Husbandry, Linzhi) for assistance with sampling. We warmly thank the crew from the local District Forestry Bureau for providing information of local walnut resources and assisting with sampling, and the local Tibetan people for their hospitality and help in sample collecting. We also thank Zeng Yanfei (the Chinese Academy of Forestry, Beijing) for her support in data analysis. Financial support was received from the National Science & Technology Pillar Program (2013BAD14B01) and from the National Natural Science Foundation of China (31400558).

Data Archiving Statement

The raw data of this research was submitted to the TreeGenes Database. The accession numbers of genotypes and environmental descriptors of Juglans sigillata and J. regia are under TGDR029 and TGDR030, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Pei.

Additional information

Communicated by A. Kremer

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Pan, G., Ma, Q. et al. The genetic diversity and introgression of Juglans regia and Juglans sigillata in Tibet as revealed by SSR markers. Tree Genetics & Genomes 11, 1 (2015). https://doi.org/10.1007/s11295-014-0804-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-014-0804-3

Keywords

Navigation