Skip to main content

Advertisement

Log in

Genetics of frost hardiness in Juglans regia L. and relationship with growth and phenology

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

The growing interest in broadleaf timber plantations in the Mediterranean area has promoted several studies focusing on the identification and characterization of variability sources in main timber-producing species. J. regia is one of these species, well-adapted to this area, but with freezing, damages registrations. Breeding focused on productive traits should include knowledge of adaptation, required to obtain a good selection capable of producing a suitable turnover in timber plantations. In this study, the features evaluated were autumn and winter frost hardiness and some vegetative traits on 22 half-sib J. regia progenies. Budsticks were exposed to sub-zero temperatures in a controlled chamber and using measurements of relative electrolyte content, the LT50 values (°C) were calculated by each individual. The study was carried out on seven-year-old progenies. The familiar heritability of autumn frost hardiness was 0.68, and on winter, it was 0.77. The autumn frost behaviour correlated genetically with the length of the growing season (0.574 ± 0.351), and both autumn and winter frost hardiness correlated inversely with secondary annual growth measured at breast height (−0.654 ± 0.259 and −0.740 ± 0.227, respectively). These results pointed that growth could therefore be improved without increasing the frost vulnerability. This should be important for growers, particularly under climate change conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Abe K, Kotoda N, Kato H, Soejima J-I (2011) Genetic studies on resistance to Valsa canker in apple: genetic variance and breeding values estimated from intra- and inter-specific hybrid progeny populations. Tree Genet Genom 7:363–372. doi:10.1007/s11295-010-0337-3

  • Abrahamsson S, Nilsson J-E, Wu H, Gil MRG, Andersson B (2012) Inheritance of height growth and autumn cold hardiness based on two generations of full-sib and half-sib families of Pinus sylvestris. Scand J For Res 27:405–413. doi:10.1080/02827581.2012.663403

    Article  Google Scholar 

  • Alberto FJ, Aitken SN, Alía R, González-Martínez SC, Hänninen H, Kremer A, Lefèvre F, Lenormand T, Yeaman S, Whetten R, Savolainen O (2013) Potential for evolutionary responses to climate change evidence from tree populations. Glob Chang Biol 19:1645–1661. doi:10.1111/gcb.12181

    Article  PubMed  PubMed Central  Google Scholar 

  • Aletà N (2004) Current Research in Spain on Walnut for Wood Production. In: Michler CH et al. (eds) Black walnut in a new century, proceedings of the 6th Walnut Council research symposium, St. Paul, MN: U.S. Department of Agriculture, Forest Service, North Central Research Station

  • Aletà N, Vilanova A, Diaz R, Voltas J (2009) Genetic variation for carbon isotope composition in Juglans regia L.: relationships with growth, phenology and climate of origin. Ann For Sci 66(11):413. doi:10.1051/forest/2009021

    Article  Google Scholar 

  • Alfaro RI, Fady B, Vendreamin GG, Dawson IK, Fleming RA, Sáenz-Romero C, Linding-Cisneros RA, Murdock T, Vinceti B, Navarro CM, Skroppa T, Baldinelli G, El-Kassaby Y, Loo J (2014) The role of forest genetic resources in responding to biotic and abiotic factors in the context of anthropogenic climate change. For Ecol Manag 333:76–87. doi:10.1016/j.foreco.2014.04.006

    Article  Google Scholar 

  • Becquey J (1997) Les noyers à bois. Institut pour le Développement Forestier, Paris

    Google Scholar 

  • Benowicz A, L’Hirondelle S, El-Kassaby YA (2001) Patterns of genetic variation in mountain hemlock (Tsuga mertensiana (bong.) Carr.) with respect to height growth and frost hardiness. For Ecol Manag 154:23–33. doi:10.1016/s0378-1127(00)00607-1

    Article  Google Scholar 

  • Charrier G, Ameglio T (2011) The timing of leaf fall affects cold acclimation by interactions with air temperature through water and carbohydrate contents. Environ Exp Bot 72:351–357. doi:10.1016/j.envexpbot.2010.12.019

    Article  Google Scholar 

  • Charrier G, Bonhome M, Lacointe A, Améglio T (2011) Are budburst dates, dormancy and cold acclimation in walnut trees (Juglans regia L.) under mainly genotypic or environmental control? Int J Biometeorol 55:763–774

    Article  PubMed  Google Scholar 

  • Charrier G, Charra-Vaskou K, Kasuga J, Cochard H, Mayr S, Ameglio T (2014) Freeze-thaw stress: effects of temperature on hydraulic conductivity and ultrasonic activity in ten woody angiosperms. Plant Physiol 164(2):992–998

    Article  CAS  PubMed  Google Scholar 

  • Charrier G, Cochard H, Ameglio T (2013a) Evaluation of the impact of frost resistances on potential altitudinal limit of trees. Tree Physiol 33:891–902. doi:10.1093/treephys/tpt062

    Article  PubMed  Google Scholar 

  • Charrier G, Poirier M, Bonhomme M, Lacointe A, Améglio T (2013b) Frost hardiness in walnut trees (Juglans regia L.): how to link physiology and modelling? Tree Physiol 33(11):1229–1241

    Article  CAS  PubMed  Google Scholar 

  • Charrier G, Ngao J, Saudreau M, Améglio T (2015) Effects of environmental factors and management practices on microclimate, winter physiology, and frost resistance in trees Frontiers in plant science 6

  • Chevin L-M, Lande R, Mace GM (2010) Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol 8:e1000357. doi:10.1371/journal.pbio.1000357

    Article  PubMed  PubMed Central  Google Scholar 

  • Demesure B (1996) Conservation of genetic resources of Noble Hardwoods in France: Overview, First Noble hardwood meedting. Country reports: the Mediterranean edn., Germany

  • Díaz R, Fernández-López J (2005) Genetic variation at early ages for several traits of interest for timber-production breeding of Juglans regia. Can J For Res Rev Can Rech For 35:235–243. doi:10.1139/x04-162

    Article  Google Scholar 

  • Fady B et al. (2003) Walnut demonstrates strong genetic variability for adaptive and wood quality traits in a network of juvenile field tests across Europe. New For 25:211–225. doi:10.1023/a:1022939609548

    Article  Google Scholar 

  • FAO (2013) Mediterranean forests and climate change. In: State of mediterranean Forests 2013.

  • Fornari B, Malvolti ME, Taurchini D, Fineschi S, Beritognolo I, Maccaglia E, Cannata F (2001) Isozyme and organellar DNA analysis of genetic diversity in natural/naturalised European and Asiatic walnut (Juglans regia L.) populations. In: Germain E (ed) Proceedings of the Fourth International Walnut Symposium. Acta Horticulturae. International Society Horticultural Science, Leuven 1, pp 167–178

  • Funes I, Aranda X, Biel C, Carbó J, Camps F, Molina AJ, de Herralde F, Grau B, Savé R (2015) Future climate change impacts on apple flowering date in a Mediterranean subbasin. Agric Water Manag. doi:10.1016/j.agwat.2015.06.013

    Google Scholar 

  • García del Barrio JM, de Miguel J, Alía R, Iglesias S (2001) Regiones de Identificación y Utilización de Material Forestal de Reproducción. Ministerio de Medio Ambiente. Serie Cartográfica

  • Garonna I, De Jong R, De Wit AJW, Mucher CA, Schmid B, Schaepman ME (2014) Strong contribution of autumn phenology to changes in satellite-derived growing season length estimates across Europe (1982-2011). Glob Chang Biol 20:3457–3470. doi:10.1111/gcb.12625

    Article  PubMed  Google Scholar 

  • Germain E (2004) Inventory of walnut research, germplasm and referenes vol 66. FAO edn. REU technical series, Rome

  • Germain E, Aletà N, Ninot A, Rouskas D, Zakinthinos G, Gomes Pereira J, Monastra F, Limongelli F (1997) Prospections réalisées dans les populations de semis et description en collections d’études des présélections issues de ces prospections. In: Germain E (ed) Amélioration d’espèces à fruits à coque: noyer, amandier, pistachier, vol 16. Options Méditerrannénnes, Zaragoza, p 147

  • Germain E, Prunet JP, Garcin A (1999) Le noyer. CTIFL edn., Paris

  • Gilmour A, Gogel B, BR C, SJ W, Thomposon R (2002) ASReml Use guide release 1.0. Hemel Hemstead, UK

  • Guardia M, Diaz R, Save R, Aletà N (2013a) Autumn frost resistance on several walnut species: methods comparison and impact of leaf fall. For Sci 59:559–565. doi:10.5849/forsci.12-094

    Google Scholar 

  • Guardia M, Save R, Diaz R, Vilanova A, Aletà N (2013b) Genotype and environment: two factors related to autumn cold hardiness on Persian walnut (Juglans regia L.). Ann For Sci 70:791–800. doi:10.1007/s13595-013-0328-2

    Article  Google Scholar 

  • Hawkins BJ, Stoehr M (2009) Growth, phenology, and cold hardiness of 32 Douglas-fir full-sib families. Can J For Res Rev Can Rech For 39:1821–1834. doi:10.1139/x09-092

    Article  Google Scholar 

  • Howe GT, Saruul P, Davis J, Chen THH (2000) Quantitative genetics of bud phenology, frost damage, and winter survival in an F-2 family of hybrid poplars. Theor Appl Genet 101:632–642. doi:10.1007/s001220051525

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: synthesis report. Contribution of working groups I, II and II to the fourth assessment report of the Intergovernamental panel on climate change. IPCC, Geneva, Switzerland

    Google Scholar 

  • Jacobs DF, Willson CJ, Ross-Davis AL, Davis AS (2008) Cold hardiness and transplant response of Juglans nigra seedlings subjected to alternative storage regimes. Ann For Sci 65:606

    Article  Google Scholar 

  • Kasuga J, Charrier G, Uemura M, Ameglio T (2015) Characteristics of ultrasonic acoustic emissions from walnut branches during freeze-thaw-induced embolism formation. J Exp Bot 66:1965–1975. doi:10.1093/jxb/eru543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241. doi:10.1111/j.1461-0248.2004.00684.x

    Article  Google Scholar 

  • Lefèvre F, Boivin T, Bontemps A, Courbet F, Davi H, Durand-Gillmann M, Fady B, Gauzere J, Gidoin C, Karam MJ, Lalagüe H, Oddou-Muratorio S, Pichot C (2014) Considering evolutionary processes in adaptive forestry. Ann For Sci 71:723–739. doi:10.1007/s13595-013-0272-1

    Article  Google Scholar 

  • Masson G (2005) Autoécologie des essences forestières-Comment installer chaque essence à sa place vol 2. Lavoisier,

  • Mboyi WM, Lee SJ (1999) Incidence of autumn frost damage and lammas growth in a 4-year-old clonal trial of Sitka spruce (Picea sitchensis) in Britain. Forestry 72:135–146. doi:10.1093/forestry/72.2.135

    Article  Google Scholar 

  • Nilsson JE, Walfridsson EA (1995) Phenological variation among plus-tree clones of Pinus sylvestris (L.) in northern Sweden. Silvae Genetica 44(1):20–28

    Google Scholar 

  • Ninyerola M, Pons X, Roure JM (2005) Atlas Climático Digital de la Península Ibérica. Metodología y aplicaciones en bioclimatología y geobotánica ISBN 932860–8-7 Universidad Autónoma de Barcelona, Bellaterra.

  • Norby RJ, Hartz-Rubin JS, Verbrugge MJ (2003) Phenological responses in maple to experimental atmospheric warming and CO2 enrichment. Glob Chang Biol 9:1792–1801. doi:10.1046/j.1529-8817.2003.00714.x

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42. doi:10.1038/nature01286

    Article  CAS  PubMed  Google Scholar 

  • Persson T, Andersson B, Ericsson T (2010) Relationship between autumn cold hardiness and field performance in northern Pinus sylvestris. Silva Fenn 44:255–266. doi:15210.14214/sf.152

  • Pollegioni P, Woeste KE, Chiocchini F, Olimpieri I, Tortolano V, Clarck J, Hemery GE, Mapelli S, Malvolti ME (2014) Landscape genetics of Persian walnut (Juglans regia L.) across its Asian range. Tree Genet Genom 10:1027–1043. doi:10.1007/s11295-014-0740-2

    Article  Google Scholar 

  • Repo T, Lappi J (1989) Estimation of standard error of impedance-estimated frost resistance. Scand J For Res 4:67–74. doi:10.1080/02827588909382547

    Article  Google Scholar 

  • Routsalainen S, Lindgren D (1997) Predicting genetic gain of backward and forward seletion in forest tree breeding. Silvae Genetica 47 (1)

  • Sakai A, Larcher W (1987) Frost survival of plants. Responses and adaptation to freezing stress. Springer-Verlag. Ecological series 62, Berlin Germany

  • Schreiber SG, Hamann A, Hacke UG, Thomas BR (2013) Sixteen years of winter stress: an assessment of cold hardiness, growth performance and survival of hybrid poplar clones at a boreal planting site. Plant Cell Environ 36:419–428. doi:10.1111/j.1365-3040.2012.02583.x

    Article  PubMed  Google Scholar 

  • Temunovic M, Frascaria-Lacoste N, Franjic J, Satovic Z, Fernandez-Manjarres JF (2013) Identifying refugia from climate change using coupled ecological and genetic data in a transitional Mediterranean-temperate tree species. Mol Ecol 22:2128–2142. doi:10.1111/mec.12252

    Article  CAS  PubMed  Google Scholar 

  • Van der Putten WH, Macel M, Visser ME (2010) Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Philos Trans R Soc B Biol Sci 365:2025–2034. doi:10.1098/rstb.2010.0037

    Article  Google Scholar 

  • Vitasse Y, Lenz A, Körner C. (2014) The interaction between freezing tolerance and phenology in temperate deciduous trees. Front Plant Sci 5:541. doi:10.3389/fpls.2014.00541

  • White TL, Adams WT, Neale DB (2007) Forest Genetics. Cabi Publishing, Wallingford UK. doi: 10.1079/9781845932855.0000

  • Whoeste K, Michler C (2011) Juglans. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, Forest trees. Springer Verlag, Berlin Heidelberg

    Google Scholar 

Download references

Acknowledgments

This study was supported by two projects from “Instituto Nacional de Investigaciones Agrarias”: RTA 2010 00104-00-00 and RTA 2011 00046-00-00.

Data archiving statement

Population names and geographic location of the studied J. regia, together with the LT50 values (winter and autumn) and vegetative traits, were submitted to TreeGene Database (accession numberTGDR053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercè Guàrdia.

Additional information

Communicated by A. M. Dandekar

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guàrdia, M., Charrier, G., Vilanova, A. et al. Genetics of frost hardiness in Juglans regia L. and relationship with growth and phenology. Tree Genetics & Genomes 12, 83 (2016). https://doi.org/10.1007/s11295-016-1038-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-016-1038-3

Keywords

Navigation