Skip to main content

Advertisement

Log in

Genetic diversity and structure of natural Juglans regia L. populations in the southern Kyrgyz Republic revealed by nuclear SSR and EST-SSR markers

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Persian walnut (Juglans regia L.), also known as common walnut, is an economically and ecologically important species in the Kyrgyz Republic. Natural forests of J. regia, walnut forests, grow between western and southwestern slopes of the Fergana and Chatkal mountain ridges in the southern Kyrgyz Republic. We investigated 11 natural populations of J. regia across its geographic range in the Kyrgyz Republic using eight nuclear microsatellite (nSSR) and eight expressed sequence tag (EST)-derived SSR (EST-SSR) markers. The SSR markers revealed comparatively high levels of genetic diversity (HO = 0.538, HE = 0.524). The overall genetic differentiation among populations was low, but statistically significant (FST = 0.068). Significant correlation between genetic and geographic distances was observed, indicating an isolation-by-distance (IBD) model for J. regia. Spatial analysis of molecular variance (SAMOVA) and Bayesian analysis assigned individuals to two main genetic groups separating central region walnut populations (Jalal-Abad province) and southeastern region walnut populations (Osh province). Genetic diversity parameters such as gene diversity and allelic richness were significantly lower in the Osh province than in the Jalal-Abad province. Detection of significant genetic discontinuities suggested the existence of physical barriers to migration and gene flow among regions. We suggest that the Osh province and Jalal-Abad province populations should be considered as two evolutionary significant units (ESUs) for conservation efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arulsekar S, McGranahan GH, Parfitt DE (1986) Inheritance of phosphoglucomutase and esterase isozymes in Persian walnut. J Hered 77(3):220–221

    Article  CAS  Google Scholar 

  • Awad L, Fady B, Khater C, Roig A, Cheddadi R (2014) Genetic structure and diversity of the endangered fir tree of Lebanon (Abies cilicica Carr.): implications for conservation. PLoS One 9(2):e90086. https://doi.org/10.1371/journal.pone.0090086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayazit S, Kazan K, Gülbitti S, Cevik V, Ayanoğlu H, Ergül A (2007) AFLP analysis of genetic diversity in low chill requiring walnut (Juglans regia L.) genotypes from Hatay, Turkey. Sci Hortic 111(4):394–398

    Article  CAS  Google Scholar 

  • Beer R, Kaiser F, Schmidt K, Ammann B, Carraro G, Grisa E, Tinner W (2008) Vegetation history of the walnut forests in Kyrgyzstan (Central Asia): natural or anthropogenic origin? Quat Sci Rev 27(5–6):621–632. https://doi.org/10.1016/j.quascirev.2007.11.012

    Article  Google Scholar 

  • Blaser J, Carter EJ, Gilmour DA (1998) Biodiversity and sustainable use of Kyrgyzstan’s walnut-fruit forests: proceedings of the seminar, Arslanbob, Dzalal-abab Oblast, Kyrgyzstan, 4–8 September 1995. IUCN.

  • Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis. Models and estimation procedures. Am J Hum Genet 19(3 Pt 1):233–257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chapuis M-P, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24(3):621–631

    Article  CAS  PubMed  Google Scholar 

  • Dangl GS, Woeste K, Aradhya MK, Koehmstedt A, Simon C, Potter D, Leslie CA, McGranahan G (2005) Characterization of 14 microsatellite markers for genetic analysis and cultivar identification of walnut. J Am Soc Hortic Sci 130(3):348–354

    Article  CAS  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B Methodol 39. https://doi.org/10.2307/2984875

  • Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581. https://doi.org/10.1046/j.1365-294X.2002.01650.x

    Article  CAS  PubMed  Google Scholar 

  • Earl DA (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361

    Article  Google Scholar 

  • Ellis JR, Burke JM (2007) EST-SSRs as a resource for population genetic analyses. Heredity 99(2):125–132. https://doi.org/10.1038/sj.hdy.6801001

    Article  CAS  PubMed  Google Scholar 

  • Epple C (2001) A vegetation study in the walnut and fruit-tree forests of Southern Kyrgyzstan. Phytocoenologia 31:571–604

    Article  Google Scholar 

  • Eriksson G (2001) Conservation of noble hardwoods in Europe. Can J For Res 31:577–587

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10(3):564–567

    Article  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinforma 1:117693430500100003

    Article  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164(4):1567–1587. https://doi.org/10.1111/j.1471-8286.2007.01758.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. 2005. Department of Genome Sciences, University of Washington, Seattle

    Google Scholar 

  • Fisher RJ, Schmidt K, Steenhof B, Akenshaev N. Poverty and forestry: a case study of Kyrgyzstan with reference to other countries in West and Central Asia. LSP Working Paper (FAO). 2004.

  • Fjellstrom RG, Parfitt, D. E., & Mcgranahan, G. H. (1994). Genetic relationships and characterization of Persian Walnut ( Juglans regia L .) cultivars using Restriction Fragment Length Polymorphisms ( RFLPs ). 119(4):833–839.

  • Fornari B, Cannata F, Spada M, Malvolti ME (1999) Allozyme analysis of genetic diversity and differentiation in European and Asiatic walnut (Juglans regia L.) populations. For Genet 6(2):115–127

    Google Scholar 

  • Geburek T, Turok J (2005) Conservation and management of forest genetic resources in Europe. Arbora Publishers Zvolen.

  • Gleeson SK (1982) Heterodichogamy in walnuts: inheritance and stable ratios. Evolution 36(5):892–902

  • Goudet J. FSTAT, a program to estimate and test gene diversities and fixation indices (version 29. 3). 2001.

  • Goudet J, Raymond M, De Meeüs T, Rousset F (1996) Testing differentiation in diploid populations. Genetics 144(4):1933–1940. https://doi.org/10.1111/j.1471-8286.2007.01769.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grisa E, Venglovsky BI, Sarymsakov Z, Carraro G (2008) Forest typology of the Kyrgyz Republic. Intercooperation, Bishkek, pp 1–217

    Google Scholar 

  • Gunn BF, Aradhya M, Salick JM, Miller AJ, Yongping Y, Lin L, Xian H (2010) Genetic variation in walnuts (J. regia and J. sigillata; Juglandaceae): species distinctions, human impacts, and the conservation of agrobiodiversity in Yunnan, China. Am J Bot 97(4):660–671. https://doi.org/10.3732/ajb.0900114

    Article  PubMed  Google Scholar 

  • Hamrick JL, Godt MJW, Sherman-Broyles SL. Factors influencing levels of genetic diversity in woody plant species. In: Population genetics of forest trees. Springer; 1992, p. 95–124.

  • Hemery GE. Juglans regia L.: genetic variation and provenance performance. University of Oxford; 2000.

  • Hemery GE, Popov SI (1998) The walnut (Juglans regia L.) forests of Kyrgyzstan and their importance as a genetic resource. Commonwealth For Rev 77(251):272–276

    Google Scholar 

  • Heuertz M, Hausman JF, Tsvetkov I, Frascaria-Lacoste N, Vekemans X (2001) Assessment of genetic structure within and among Bulgarian populations of the common ash (Fraxinus excelsior L.). Mol Ecol 10(7):1615–1623

    Article  CAS  PubMed  Google Scholar 

  • Hu LJ, Uchiyama K, Shen HL, Saito Y, Tsuda Y, Ide Y (2008) Nuclear DNA microsatellites reveal genetic variation but a lack of phylogeographical structure in an endangered species, Fraxinus mandshurica, across north-east China. Ann Bot 102(2):195–205. https://doi.org/10.1093/aob/mcn074

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu LJ, Uchiyama K, Saito Y, Ide Y (2010) Contrasting patterns of nuclear microsatellite genetic structure of Fraxinus mandshurica var. japonica between northern and southern populations in Japan. J Biogeogr 37(6):1131–1143. https://doi.org/10.1111/j.1365-2699.2010.02275.x

    Article  Google Scholar 

  • Jalilova G, Khadka C, Vacik H (2012) Developing criteria and indicators for evaluating sustainable forest management: a case study in Kyrgyzstan. Forest Policy Econ 21(July 2015):32–43. https://doi.org/10.1016/j.forpol.2012.01.010

    Article  Google Scholar 

  • Jost LOU (2008) G ST and its relatives do not measure differentiation. Mol Ecol 17(18):4015–4026

    Article  PubMed  Google Scholar 

  • Karimi R, Ershadi A, Vahdati K, Woeste K (2010) Molecular characterization of Persian walnut populations in Iran with microsatellite markers. HortScience 45(9):1403–1406

    Article  Google Scholar 

  • Krutovsky KV, Neale DB. Forest genomics and new molecular genetic approaches to measuring and conserving adaptive genetic diversity in forest Trees. In: Conservation and management of forest genetic resources in Europe. Zvolen: Arbora Publishers; 2005, p. 369–390.

  • Langella O (2002) POPULATIONS 1.2. 28. Population genetic software (individuals or populations distances, phylogenetic trees). CNRS, France

    Google Scholar 

  • Lewis PO, Zaykin D. Genetic data analysis: computer program for the analysis of allelic data. Version; 2001

  • Lusini I, Velichkov I, Pollegioni P, Chiocchini F, Hinkov G, Zlatanov T, Cherubini M, Mattioni C (2014) Estimating the genetic diversity and spatial structure of Bulgarian Castanea sativa populations by SSRs: implications for conservation. Conserv Genet 15(2):283–293

    Article  Google Scholar 

  • Luza JG, Polito VS (1988) Cryopreservation of English walnut (Juglans regia L.) pollen. Euphytica 37(2):141–148

    Article  Google Scholar 

  • MacDougall AS, McCann KS, Gellner G, Turkington R (2013) Diversity loss with persistent human disturbance increases vulnerability to ecosystem collapse. Nature 494(7435):86–89

    Article  CAS  PubMed  Google Scholar 

  • Malvolti ME, Fineschi S, Pigliucci M (1994) Morphological integration and genetic variability in Juglans regia L. J Hered 85(5):389–394

    Article  Google Scholar 

  • Manni F, Guerard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier’s algorithm. Hum Biol 76(2):173–190. https://doi.org/10.1353/hub.2004.0034

    Article  PubMed  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27(2 Part 1):209–220

    CAS  PubMed  Google Scholar 

  • Meng J, He SL, Li DZ, Yi TS (2016) Nuclear genetic variation of Rosa odorata var. gigantea (Rosaceae): population structure and conservation implications. Tree Genet Genomes, 12(4). https://doi.org/10.1007/s11295-016-1024-9

  • Molnar TJ, Zaurov DE, Capik JM, Eisenman SW, Ford T, Nikolyi LV, Funk CR (2011) Persian walnuts ( Juglans regia L .) in Central Asia. Annu Rep North Nut Grow Assoc 101:56–69

    Google Scholar 

  • Monmonier MS (1973) Maximum-difference barriers: an alternative numerical regionalization method. Geogr Anal 5(3):245–261. https://doi.org/10.1111/j.1538-4632.1973.tb01011.x

    Article  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106(949):283–292. https://doi.org/10.1086/282771

    Article  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89(3):583–590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Newton AC, Allnutt TR, Gillies ACM, Lowe AJ, Ennos RA (1999) Molecular phylogeography, intraspecific variation and the conservation of tree species. Trends Ecol Evol 14(4):140–145

    Article  CAS  PubMed  Google Scholar 

  • Nicese FP, Hormaza JI, McGranahan GH (1998) Molecular characterization and genetic relatedness among walnut (Juglans regia L.) genotypes based on RAPD markers. Euphytica 101(2):199–206

    Article  CAS  Google Scholar 

  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13(5):1143–1155. https://doi.org/10.1111/j.1365-294X.2004.02141.x

    Article  CAS  PubMed  Google Scholar 

  • Oldfield ML. The value of conserving genetic Resources. Sinauer Associates, Inc.; 1989.

  • Orozumbekov A (2011) The natural heritage and conservation of Tien Shan forests, vol 26. IUFRO Vienna, Austria

    Google Scholar 

  • Orozumbekov A, Musuraliev T, Toktoraliev B, Kysanov A, Shamshiev B, Sultangaziev O. Forest rehabilitation in Kyrgyzstan. Keep Asia Green; 2009, p. 131

  • Orozumbekov A, Cantarello E, Newton AC (2015) Status, distribution and use of threatened tree species in the walnut-fruit forests of Kyrgyzstan. Forests, Trees and Livelihoods 24(1):1–17

    Article  Google Scholar 

  • Pacheco-Olvera A, Hernandez-Verdugo S, Rocha-Ramirez V, Gonzalez-Rodriguez A, Oyama K (2012) Genetic diversity and structure of pepper (Capsicum Annuum L.) from Northwestern Mexico analyzed by microsatellite markers. Crop Sci 52(1):231–241. https://doi.org/10.2135/cropsci2011.06.0319

    Article  Google Scholar 

  • Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358 Macintosh

    CAS  PubMed  Google Scholar 

  • Peakall ROD, Smouse PE (2006) GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6(1):288–295

    Article  Google Scholar 

  • Petit RJ, Hampe A (2006) Some evolutionary consequences of being a tree. Annu Rev Ecol Evol Syst 37(1):187–214. https://doi.org/10.1146/annurev.ecolsys.37.091305.110215

    Article  Google Scholar 

  • Pollegioni P, Woeste K, Olimpieri I, Marandola D, Cannata F, Malvolti ME (2011) Long-term human impacts on genetic structure of Italian walnut inferred by SSR markers. Tree Genet Genomes 7(4):707–723. https://doi.org/10.1007/s11295-011-0368-4

    Article  Google Scholar 

  • Pollegioni P, Woeste KE, Chiocchini F, Olimpieri I, Tortolano V, Clark J, Hemerz GE, Mapelli S, Malvolti ME (2014) Landscape genetics of Persian walnut (Juglans regia L.) across its Asian range. Tree Genet Genomes 10(4):1027–1043. https://doi.org/10.1007/s11295-014-0740-2

    Article  Google Scholar 

  • Potter D, Gao F, Aiello G, Leslie C, McGranahan G (2002) Intersimple sequence repeat markers for fingerprinting and determining genetic relationships of walnut (Juglans regia) cultivars. J Am Soc Hortic Sci 127(1):75–81

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard JK, Wen X, Falush D (2009) STRUCTURE ver. 2. University of Chicago, Chicago, USA, p 3

    Google Scholar 

  • Qi J, Wang K, Wu C, Wang W, Hao Y, Leng P (2009) Development of EST-SSR markers in Juglans regia. J Agric Biotechnol 17(5):872–876

    CAS  Google Scholar 

  • R Core Team. R: a language and environment for statistical computing. 2013.

  • Rice WER (1989) Analyzing tables of statistical tests. Evolution 43:223–225. https://doi.org/10.2307/2409177

    Article  PubMed  Google Scholar 

  • Rotach P (1999) In situ conservation and promotion of Noble Hardwoods: silvicultural management strategies. In: Turok J, Jensen J, Palmberg-Lerche C, Rusanen M, Russell K, de Vries S et al (eds) Noble Hardwoods Network. Report of the third meeting, Sagadi, Estonia, 13–16 June 1998. IPGRI, Rome, pp 39–50

    Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145(4):1219–1228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sambrook J, Fritsche E, Maniatis T (1989) Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schmidt M, Doerre A (2011) Changing meanings of Kyrgyzstan’s nut forests from colonial to post-Soviet times. Area 43(3):288–296

    Article  Google Scholar 

  • Solar A, Smole J, Viršček-Marn M. Characterization of isozyme variation in walnut (Juglans regia L.). Springer; 1994.

  • Sorg JP, Venglovskii BI. Biodiversity and sustainable management of Kyrgyzstan’s walnut fruit forests: development of new silvilcultural approaches. Proposal for Orech-Les Project; 2001, p. 3–9.

  • Thiel T, Michalek W, Varshney R, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106(3):411–422. https://doi.org/10.1007/s00122-002-1031-0

    Article  CAS  PubMed  Google Scholar 

  • Tsuda Y, Kimura M, Kato S, Katsuki T, Mukai Y, Tsumura Y (2009) Genetic structure of Cerasus jamasakura, a Japanese flowering cherry, revealed by nuclear SSRs: implications for conservation. J Plant Res 122(4):367–375

    Article  CAS  PubMed  Google Scholar 

  • Vahdati K, Pourtaklu SM, Karimi R, Barzehkar R, Amiri R, Mozaffari M, Woeste K (2015) Genetic diversity and gene flow of some Persian walnut populations in southeast of Iran revealed by SSR markers. Plant Syst Evol 301(2):691–699

    Article  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23(1):48–55. https://doi.org/10.1016/j.tibtech.2004.11.005

    Article  CAS  PubMed  Google Scholar 

  • Venglovsky BI. Potentials and constraints for the development of the walnut-fruit forests of Kyrgyzstan. In: Biodiversity and Sustainable Use of Kyrgyzstan’s Walnut-Fruit Forests. IUCN, Gland. 1998, p. 73–76

  • Victory ER, Glaubitz JC, Rhodes OE Jr, Woeste KE (2006) Genetic homogeneity in Juglans nigra (Juglandaceae) at nuclear microsatellites. Am J Bot 93(1):118–126

    Article  CAS  Google Scholar 

  • Wang H, Pei D, Gu R, Wang B (2008) Genetic diversity and structure of walnut populations in central and southwestern China revealed by microsatellite markers. J Am Soc Hortic Sci 133(2):197–203

    Article  Google Scholar 

  • Wang H, Pan G, Ma Q, Zhang J, Pei D (2015) The genetic diversity and introgression of Juglans regia and Juglans sigillata in Tibet as revealed by SSR markers. Tree Genet Genomes 11(1):1–11. https://doi.org/10.1007/s11295-014-0804-3

    Article  Google Scholar 

  • Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution. 1984;1358–1370.

  • Winter M-B, Wolff B, Gottschling H, Cherubini P (2009) The impact of climate on radial growth and nut production of Persian walnut (Juglans regia L.) in Southern Kyrgyzstan. Eur J For Res 128(6):531–542

    Article  Google Scholar 

  • Woeste K, McGranahan GH, Bernatzky R (1996) Randomly amplified polymorphic DNA loci from a walnut backcross [(Juglans hindsii× J. regiaJ. regia]. J Am Soc Hortic Sci 121(3):358–361

    Article  CAS  Google Scholar 

  • Woeste K, Burns R, Rhodes O, Michler C (2002) Thirty polymorphic nuclear microsatellite loci from black walnut. J Hered 93(1):58–60

    Article  CAS  PubMed  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28(2):114–138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh FC, Yang RC, Boyle ., Ye ZH, Mao JX. POPGENE, the user-friendly shareware for population genetic analysis. In: Molecular biology and biotechnology centre, vol 10. Canada: University of Alberta; 1997, p. 295–301.

  • Yi F, Zhi-Jun Z, She-Long Z, Shu-Ping L (2011) Development of walnut EST-SSR markers and primer design. Journal of Anhui Agricultural Sciences 36:10

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Almazbek Orozumbekov for sampling establishments and Muratali Torokeldiev for his assistance with fieldwork. We also thank Oleksandra Dolynska for her laboratory assistance. We are grateful to two anonymous reviewers for their helpful recommendations on earlier versions of the manuscript.

Data archiving statement

Population names of Persian walnut collection, geographic location of Persian walnut populations, and microsatellite data for 550 Persian walnut genotypes were submitted to the TreeGene Database (http://treegenesdb.org/Drupal/user/241/TPPS; accession number TGDR081).

Funding

This research was supported by a scholarship from Deutscher Akademischer Austauschdienst (DAAD) to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurlan Torokeldiev.

Additional information

Communicated by E. Dirlewanger

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 18.4 kb)

ESM 2

(DOCX 37.1 kb)

ESM 3

(DOCX 20.2 kb)

ESM 4

(DOCX 16.7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torokeldiev, N., Ziehe, M., Gailing, O. et al. Genetic diversity and structure of natural Juglans regia L. populations in the southern Kyrgyz Republic revealed by nuclear SSR and EST-SSR markers. Tree Genetics & Genomes 15, 5 (2019). https://doi.org/10.1007/s11295-018-1311-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-018-1311-8

Keywords

Navigation