Skip to main content
Log in

Adenosine A2B receptor activation stimulates glucose uptake in the mouse forebrain

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

ATP consumption during intense neuronal activity leads to peaks of both extracellular adenosine levels and increased glucose uptake in the brain. Here, we investigated the hypothesis that the activation of the low-affinity adenosine receptor, the A2B receptor (A2BR), promotes glucose uptake in neurons and astrocytes, thereby linking brain activity with energy metabolism. To this end, we mapped the spatiotemporal accumulation of the fluorescent-labelled deoxyglucose, 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG), in superfused acute hippocampal slices of C57Bl/6j mice. Bath application of the A2BR agonist BAY606583 (300 nM) triggered an immediate and stable (>10 min) increase of the velocity of 2-NBDG accumulation throughout hippocampal slices. This was abolished with the pretreatment with the selective A2BR antagonist, MRS1754 (200 nM), and was also absent in A2BR null-mutant mice. In mouse primary astrocytic or neuronal cultures, BAY606583 similarly increased 3H-deoxyglucose uptake in the following 20 min incubation period, which was again abolished by a pretreatment with MRS1754. Finally, incubation of hippocampal, frontocortical, or striatal slices of C57Bl/6j mice at 37 °C, with either MRS1754 (200 nM) or adenosine deaminase (3 U/mL) significantly reduced glucose uptake. Furthermore, A2BR blockade diminished newly synthesized glycogen content and at least in the striatum, increased lactate release. In conclusion, we report here that A2BR activation is associated with an instant and tonic increase of glucose transport into neurons and astrocytes in the mouse brain. These prompt further investigations to evaluate the clinical potential of this novel glucoregulator mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

A2BR(s):

Adenosine A2B receptor(s)

2-NBDG:

2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose

A1R:

Adenosine A1 receptor

FELASA:

Federation for Laboratory Animal Science Associations

KO:

Knockout

HEPES:

N-(2-hydroxyethyl)piperazine-N′-(2-ethanesulfonic acid)

DMSO:

Dimethyl sulfoxide

DNAse:

Deoxyribonuclease

DMEM:

Dulbecco’s modified Eagle’s medium

HDG:

3H-2-deoxyglucose

CyB:

Cytochalasin B

GLUT1:

Glucose transporter type 1

SEM:

Standard error of the mean

ANOVA:

Analysis of variance

ADA:

Adenosine deaminase

DL-TBOA:

DL-threo-β-Benzyloxyaspartic acid

GABA:

γ-aminobutyric acid

References

  1. Pellerin L, Magistretti PJ (2012) Sweet sixteen for ANLS. J Cereb Blood Flow Metab 32:1152–1166. doi:10.1038/jcbfm.2011.149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Ivanov AI, Malkov AE, Waseem T, Mukhtarov M, Buldakova S, Gubkina O, Zilberter M, Zilberter Y (2014) Glycolysis and oxidative phosphorylation in neurons and astrocytes during network activity in hippocampal slices. J Cereb Blood Flow Metab 34:397–407. doi:10.1038/jcbfm.2013.222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145. doi:10.1097/00004647-200110000-00001

    Article  CAS  PubMed  Google Scholar 

  4. Cunha RA (2008) Different cellular sources and different roles of adenosine: A1 receptor-mediated inhibition through astrocytic-driven volume transmission and synapse-restricted A2A receptor-mediated facilitation of plasticity. Neurochem Int 52:65–72. doi:10.1016/j.neuint.2007.06.026

    Article  CAS  PubMed  Google Scholar 

  5. Sims RE, Dale N (2014) Activity-dependent adenosine release may be linked to activation of Na+-K+ ATPase: an in vitro rat study. PLoS ONE. doi:10.1371/journal.pone.0087481

    Google Scholar 

  6. Cunha RA (2001) Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: different roles, different sources and different receptors. Neurochem Int 38:107–125

    Article  CAS  PubMed  Google Scholar 

  7. Hagberg H, Andersson P, Butcher S, Sandberg M, Lehmann A, Hamberger A (1986) Blockade of N-methyl-D-aspartate-sensitive acidic amino acid receptors inhibits ischemia-induced accumulation of purine catabolites in the rat striatum. Neurosci Lett 68:311–316

    Article  CAS  PubMed  Google Scholar 

  8. Onodera H, Iijima K, Kogure K (1986) Mononucleotide metabolism in the rat brain after transient ischemia. J Neurochem 46:1704–1710

    Article  CAS  PubMed  Google Scholar 

  9. Newby AC, Worku Y, Holmquist CA (1985) Adenosine formation. Evidence for a direct biochemical link with energy metabolism. Adv Myocardiol 6:273–284

    CAS  PubMed  Google Scholar 

  10. Mori M, Nishizaki T, Okada Y (1992) Protective effect of adenosine on the anoxic damage of hippocampal slice. Neuroscience 46:301–307

    Article  CAS  PubMed  Google Scholar 

  11. Huber M, Kittner B, Hojer C, Fink GR, Neveling M, Heiss WD (1993) Effect of propentofylline on regional cerebral glucose metabolism in acute ischemic stroke. J Cereb Blood Flow Metab 13:526–530. doi:10.1038/jcbfm.1993.68

    Article  CAS  PubMed  Google Scholar 

  12. Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J (2011) International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors—an update. Pharmacol Rev 63:1–34. doi:10.1124/pr.110.003285

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Gomes CV, Kaster MP, Tomé AR, Agostinho PM, Cunha RA (2011) Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim Biophys Acta 1808:1380–1399. doi:10.1016/j.bbamem.2010.12.001

    Article  CAS  PubMed  Google Scholar 

  14. Nehlig A, Daval JL, Boyet S (1994) Effects of selective adenosine A1 and A2 receptor agonists and antagonists on local rates of energy metabolism in the rat brain. Eur J Pharmacol 258:57–66

    Article  CAS  PubMed  Google Scholar 

  15. Rüsing D, Müller CE, Verspohl EJ (2006) The impact of adenosine and A2B receptors on glucose homoeostasis. J Pharm Pharmacol 58:1639–1645. doi:10.1211/jpp.58.12.0011

    Article  PubMed  Google Scholar 

  16. Johnston-Cox H, Koupenova M, Yang D, Corkey B, Gokce N, Farb MG, LeBrasseur N, Ravid K (2012) The A2b adenosine receptor modulates glucose homeostasis and obesity. PLoS One 7, e40584. doi:10.1371/journal.pone.0040584

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Magistretti PJ, Hof PR, Martin JL (1986) Adenosine stimulates glycogenolysis in mouse cerebral cortex: a possible coupling mechanism between neuronal activity and energy metabolism. J Neurosci 6:2558–2562

    CAS  PubMed  Google Scholar 

  18. Allaman I, Lengacher S, Magistretti PJ, Pellerin L (2003) A2B receptor activation promotes glycogen synthesis in astrocytes through modulation of gene expression. Am J Physiol Cell Physiol 284:C696–C704. doi:10.1152/ajpcell.00202.2002

    Article  CAS  PubMed  Google Scholar 

  19. Gonçalves FQ, Pires J, Pliassova A et al (2015) Adenosine A2b receptors control A1 receptor-mediated inhibition of synaptic transmission in the mouse hippocampus. Eur J Neurosci 41:876–886. doi:10.1111/ejn.12851

    Article  Google Scholar 

  20. Hua X, Kovarova M, Chason KD et al (2007) Enhanced mast cell activation in mice deficient in the A2b adenosine receptor. J Exp Med 204:117–128. doi:10.1084/jem.20061372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Rebola N, Canas PM, Oliveira CR, Cunha RA (2005) Different synaptic and subsynaptic localization of adenosine A2A receptors in the hippocampus and striatum of the rat. Neuroscience 132:893–903. doi:10.1016/j.neuroscience.2005.01.014

    Article  CAS  PubMed  Google Scholar 

  22. Matos M, Augusto E, Santos-Rodrigues AD, Schwarzschild MA, Chen JF, Cunha RA, Agostinho P (2012) Adenosine A2A receptors modulate glutamate uptake in cultured astrocytes and gliosomes. Glia 60:702–716. doi:10.1002/glia.22290

    Article  PubMed  Google Scholar 

  23. Klip A, Pâquet MR (1990) Glucose transport and glucose transporters in muscle and their metabolic regulation. Diabetes Care 13:228–243

    Article  CAS  PubMed  Google Scholar 

  24. Barros LF, Bittner CX, Loaiza A, Ruminot I, Larenas V, Moldenhauer H, Oyarzún C, Alvarez M (2009) Kinetic validation of 6-NBDG as a probe for the glucose transporter GLUT1 in astrocytes. J Neurochem 109(S1):94–100. doi:10.1111/j.1471-4159.2009.05885.x

    Article  CAS  PubMed  Google Scholar 

  25. Simpson IA, Carruthers A, Vannucci SJ (2007) Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab 27:1766–1791. doi:10.1038/sj.jcbfm.9600521

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Lemos C, Valério-Fernandes A, Ghisleni GC, Ferreira SG, Ledent C, de Ceballos ML, Köfalvi A (2012) Impaired hippocampal glucoregulation in the cannabinoid CB1 receptor knockout mice as revealed by an optimized in vitro experimental approach. J Neurosci Methods 204:366–373. doi:10.1016/j.jneumeth.2011.11.028

    Article  CAS  PubMed  Google Scholar 

  27. Jakoby P, Schmidt E, Ruminot I, Gutiérrez R, Barros LF (1991) Deitmer JW (2014) Higher transport and metabolism of glucose in astrocytes compared with neurons: a multiphoton study of hippocampal and cerebellar tissue slices. Cereb Cortex 24:222–231. doi:10.1093/cercor/bhs309

    Article  Google Scholar 

  28. Pellerin L, Magistretti PJ (1997) Glutamate uptake stimulates Na+, K+-ATPase activity in astrocytes via activation of a distinct subunit highly sensitive to ouabain. J Neurochem 69:2132–2137

    Article  CAS  PubMed  Google Scholar 

  29. Brown AM, Ransom BR (2007) Astrocyte glycogen and brain energy metabolism. Glia 55:1263–1271. doi:10.1002/glia.20557

    Article  PubMed  Google Scholar 

  30. Moidunny S, Vinet J, Wesseling E, Bijzet J, Shieh CH, van Ijzendoorn SC, Bezzi P, Boddeke HW, Biber K (2012) Adenosine A2B receptor-mediated leukemia inhibitory factor release from astrocytes protects cortical neurons against excitotoxicity. J Neuroinflammation 9:198. doi:10.1186/1742-2094-9-198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Gu L, Huang B, Shen W, Gao L, Ding Z, Wu H, Guo J (2013) Early activation of nSMase2/ceramide pathway in astrocytes is involved in ischemia-associated neuronal damage via inflammation in rat hippocampi. J Neuroinflammation 10:109. doi:10.1186/1742-2094-10-109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Molz S, Olescowicz G, Kraus JR, Ludka FK, Tasca CI (2015) Purine receptors are required for DHA-mediated neuroprotection against oxygen and glucose deprivation in hippocampal slices. Purinergic Signal 11:117–126. doi:10.1007/s11302-014-9438-z

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Figler RA, Wang G, Srinivasan S, Jung DY, Zhang Z, Pankow JS, Ravid K, Fredholm B, Hedrick CC, Rich SS, Kim JK, LaNoue KF, Linden J (2011) Links between insulin resistance, adenosine A2B receptors, and inflammatory markers in mice and humans. Diabetes 60:669–679. doi:10.2337/db10-1070

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Csóka B, Koscsó B, Töro G, Kókai E, Virág L, Németh ZH, Pacher P, Bai P, Haskó G (2014) A2B adenosine receptors prevent insulin resistance by inhibiting adipose tissue inflammation via maintaining alternative macrophage activation. Diabetes 63:850–866. doi:10.2337/db13-0573

    Article  PubMed Central  PubMed  Google Scholar 

  35. Antonioli L, Blandizzi C, Csóka B, Pacher P, Haskó G (2015) Adenosine signalling in diabetes mellitus-pathophysiology and therapeutic considerations. Nat Rev Endocrinol 11:228–241. doi:10.1038/nrendo.2015.10

    CAS  PubMed  Google Scholar 

  36. Hutchins DA, Rogers KJ (1970) Physiological and drug-induced changes in the glycogen content of mouse brain. Br J Pharmacol 39:9–25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Pellerin L, Bouzier-Sore A-K, Aubert A, Serres S, Merle M, Costalat R, Magistretti PJ (2007) Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 55:1251–1262. doi:10.1002/glia.20528

    Article  PubMed  Google Scholar 

  38. Schulte G, Fredholm BB (2003) The GS-coupled adenosine A2B receptor recruits divergent pathways to regulate ERK1/2 and p38. Exp Cell Res 290:168–176

    Article  CAS  PubMed  Google Scholar 

  39. Feoktistov I, Biaggioni I (1997) Adenosine A2B receptors. Pharmacol Rev 49:381–402

    CAS  PubMed  Google Scholar 

  40. Banker GA, Cowan WM (1977) Rat hippocampal neurons in dispersed cell culture. Brain Res 126:397–425

    Article  CAS  PubMed  Google Scholar 

  41. de Lima AD, Voigt T (1997) Identification of two distinct populations of gamma-aminobutyric acidergic neurons in cultures of the rat cerebral cortex. J Comp Neurol 388:526–540

    Article  PubMed  Google Scholar 

  42. Castro MA, Beltrán FA, Brauchi S, Concha II (2009) A metabolic switch in brain: glucose and lactate metabolism modulation by ascorbic acid. J Neurochem 110:423–440. doi:10.1111/j.1471-4159.2009.06151.x

    Article  CAS  PubMed  Google Scholar 

  43. Reid CB, Walsh CA (2002) Evidence of common progenitors and patterns of dispersion in rat striatum and cerebral cortex. J Neurosci 22:4002–4014

    CAS  PubMed  Google Scholar 

  44. Verkhratsky A, Burnstock G (2014) Purinergic and glutamatergic receptors on astroglia. Adv Neurobiol 11:55–79. doi:10.1007/978-3-319-08894-5_4

    Article  PubMed  Google Scholar 

  45. Halassa MM, Haydon PG (2010) Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu Rev Physiol 72:335–355. doi:10.1146/annurev-physiol-021909-135843

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Branconnier RJ (1983) The efficacy of the cerebral metabolic enhancers in the treatment of senile dementia. Psychopharmacol Bull 19:212–219

    CAS  PubMed  Google Scholar 

  47. Messier C (2004) Glucose improvement of memory: a review. Eur J Pharmacol 490:33–57. doi:10.1016/j.ejphar.2004.02.043

    Article  CAS  PubMed  Google Scholar 

  48. Watson GS, Craft S (2004) Modulation of memory by insulin and glucose: neuropsychological observations in Alzheimer’s disease. Eur J Pharmacol 490:97–113. doi:10.1016/j.ejphar.2004.02.048

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financially supported by NARSAD, Santa Casa da Misercórdia, DARPA (09-68-ESR-FP-010), CAPES-FCT, and CNPq (Ciência sem Fronteiras) and co-funded by FEDER (QREN), through Programa Mais Centro under project CENTRO-07-ST24-FEDER-002006 and through Programa Operacional Factores de Competitividade—COMPETE and National funds (PTDC/SAU-OSM/105663/2008, EXPL/NEU-NMC/0671/2012 and Pest-C/SAU/LA0001/2013-2014) via FCT—Fundação para a Ciência e a Tecnologia.

Author Contributions

A.K., R.A.C., and D.R. conceived and designed the work. A.K., B.S.P., and C.L. carried out the experiments. R.O.B., J.M.M., and R.J.R. were responsible for the cell cultures. A.K. performed data analysis and wrote the first draft. A.K., C.L., R.A.C., and D.R. interpreted results and contributed to the writing and the edition of the manuscript. R.A.C., R.J.R., and D.R. supported the costs of the study. All authors have reviewed and commented on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attila Köfalvi.

Ethics declarations

Conflict of interest

The authors have no conflict of interests to report and received no financial support or compensation from any individual or corporate entity over the past 3 years for research or professional services, and there are no personal holdings that could be perceived as constituting a potential conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 281 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemos, C., Pinheiro, B.S., Beleza, R.O. et al. Adenosine A2B receptor activation stimulates glucose uptake in the mouse forebrain. Purinergic Signalling 11, 561–569 (2015). https://doi.org/10.1007/s11302-015-9474-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-015-9474-3

Keywords

Navigation