Skip to main content

Advertisement

Log in

Amazon River dissolved load: temporal dynamics and annual budget from the Andes to the ocean

  • Pollution Issues of Large Rivers
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The aim of the present study is to estimate the export fluxes of major dissolved species at the scale of the Amazon basin, to identify the main parameters controlling their spatial distribution and to identify the role of discharge variability in the variability of the total dissolved solid (TDS) flux through the hydrological cycle. Data are compiled from the monthly hydrochemistry and daily discharge database of the “Programa Climatologico y Hidrologico de la Cuenca Amazonica de Bolivia” (PHICAB) and the HYBAM observatories from 34 stations distributed over the Amazon basin (for the 1983–1992 and 2000–2012 periods, respectively). This paper consists of a first global observation of the fluxes and temporal dynamics of each geomorphological domain of the Amazon basin. Based on mean interannual monthly flux calculations, we estimated that the Amazon basin delivered approximately 272 × 106 t year−1 (263–278) of TDS during the 2003–2012 period, which represents approximately 7 % of the continental inputs to the oceans. This flux is mainly made up by HCO3, Ca and SiO2, reflecting the preferential contributions of carbonate and silicate chemical weathering to the Amazon River Basin. The main tributaries contributing to the TDS flux are the Marañon and Ucayali Rivers (approximately 50 % of the TDS production over 14 % of the Amazon basin area) due to the weathering of carbonates and evaporites drained by their Andean tributaries. An Andes–sedimentary area–shield TDS flux (and specific flux) gradient is observed throughout the basin and is first explained by the TDS concentration contrast between these domains, rather than variability in runoff. This observation highlights that, under tropical context, the weathering flux repartition is primarily controlled by the geomorphological/geological setting and confirms that sedimentary areas are currently active in terms of the production of dissolved load. The log relationships of concentration vs discharge have been characterized over all the studied stations and for all elements. The analysis of the slope of the relationship within the selected contexts reveals that the variability in TDS flux is mainly controlled by the discharge variability throughout the hydrological year. At the outlet of the basin, a clockwise hysteresis is observed for TDS concentration and is mainly controlled by Ca and HCO3 hysteresis, highlighting the need for a sampling strategy with a monthly frequency to accurately determine the TDS fluxes of the basin. The evaporite dissolution flux tends to be constant, whereas dissolved load fluxes released from other sources (silicate weathering, carbonate weathering, biological and/or atmospheric inputs) are mainly driven by variability in discharge. These results suggest that past and further climate variability had or will have a direct impact on the variability of dissolved fluxes in the Amazon. Further studies need to be performed to better understand the processes controlling the dynamics of weathering fluxes and their applicability to present-day concentration–discharge relationships at longer timescales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Armijos E, Crave A, Vauchel P et al (2013a) Suspended sediment dynamic in the Amazon River of Peru. J S Am Earth Sci 44:75–84

    Article  CAS  Google Scholar 

  • Armijos E, Laraque A, Barba S et al (2013b) Suspended sediments and dissolved yields from the Andean basins of Ecuador. Hydrol Process 58:1478–1494

    CAS  Google Scholar 

  • Aufdenkampe A, Mayorga E, Hedges JI et al (2007) Organic matter in the Peruvian headwaters of the Amazon: compositional evolution from the Andes to the lowland Amazon mainstem. Org Geochem 38:337–364

    Article  CAS  Google Scholar 

  • Baby P, Guyot JL, Hérail G (2009) Tectonic control of erosion and sedimentation in the Amazon Basin of Bolivia. Hydrol Process 23:3225–3229

    Article  Google Scholar 

  • Basu NB, Thompson SE, Rao PS (2011) Hydrologic and biogeochemical functioning of intensively managed catchments: a synthesis of top-down analyses. Water Resources Research 47:W00J15

    Google Scholar 

  • Beaulieu E, Goddéris Y, Labat D et al (2011) Modeling water-rock interaction in the Mackenzie basin: competition between sulfuric and carbonic acids. EPSL 289:114–123

    CAS  Google Scholar 

  • Benavides V (1968) Saline deposits of South America. Geol Soc Am Spec Pap 88:249–290

    CAS  Google Scholar 

  • Berner EK, Berner RA (1987) The global water cycle: geochemistry and environment. Englewood Cliffs, New Jersey

    Google Scholar 

  • Berner RA, Kothavala (2001) GEOCARB III: a revised model of atmospheric CO2 over phanerozoic time. Am J Sci 301:182–204

    Article  CAS  Google Scholar 

  • Bombardi RJ, Carvalho LMV (2009) IPCC global coupled model simulations of the South America monsoon system. Clim Dyn 33:893–916

    Article  Google Scholar 

  • Bouchez J, Gaillardet J (2014) How accurate are rivers as gauges of chemical denudation of the Earth surface? Geology 42:171–174

  • Bouchez J, Gaillardet J, Lupker M et al (2012) Floodplains of large rivers: weathering reactors or simple silos? Chem Geol 332–333:166–184

    Article  CAS  Google Scholar 

  • Bouchez J, Gaillardet J, Von Blanckenburg F (2014) Weathering intensity in lowland river basins: from the Andes to the Amazon mouth. Procedia Earth Planet Sci. pp 280–286

  • Bowes MJ, House WA, Hodgkinson RA, Leach DV (2005) Phosphorus—discharge hysteresis during storm events along a river catchment: the River Swale, UK. Water Res 39:751–762

    Article  CAS  Google Scholar 

  • Boy J, Valarezo C, Wilcke W (2008) Water flow paths in soil control element exports in an Andean tropical montane forest. Eur J Soil Sci 59:1209–1227

    Article  CAS  Google Scholar 

  • Bustillo V, Victoria RL, Sousa de Moura JM et al (2010) Biogeochemistry of the Amazonian floodplains: insights from six end-member mixing models. Earth Interact 14:1–83

    Article  Google Scholar 

  • Bustillo V, Victoria RL, Sousa de Moura JM et al (2011) Factors driving the biogeochemical budget of the Amazon River and its statistical modelling. Compt Rendus Geosci 343:261–277

    Article  CAS  Google Scholar 

  • Callède J, Cochonneau G, Ronchail J et al (2010) Les apports en eau de l’Amazone à l’océan Atlantique. Rev Sci Eau 23

  • Calmels D, Gaillardet J, Brenot A, France-Lanord C (2007) Sustained sulfide oxidation by physical erosion processes in the Mackenzie River basin: climatic perspectives. Geology 35:1003–1006

    Article  CAS  Google Scholar 

  • Carretier S, Godderis Y, Delannoy T, Rouby D (2014) Mean bedrock-to-saprolite conversion and erosion rates during mountain growth and decline. Geomorphology 209:39–52

    Article  Google Scholar 

  • Chaudhuri S, Clauer N, Semhi K (2007) Plant decay as a major control of river dissolved potassium: a first estimate. Chem Geol 243:178–190

    Article  CAS  Google Scholar 

  • Chen J, Wang F, Xia X, Zhang L (2002) Major element chemistry of the Changjiang (Yangtze River). Chem Geol 187:231–255

    Article  CAS  Google Scholar 

  • Clow DW, Mast MA (2010) Mechanisms for chemostatic behavior in catchments: implications for CO2 consumption by mineral weathering. Chem Geol 269:40–51

    Article  CAS  Google Scholar 

  • Cochonneau G, Sondag F, Jean-Loup G, et al. (2006) L’Observatoire de Recherche en Environnement, ORE HYBAM sur les grands fleuves amazoniens = The Environmental Observation and Research project, ORE HYBAM, and the rivers of the Amazon basin. The Fifth FRIEND World Conference held Climate: Variability and Change—Hydrological Impacts 308

  • Coynel A, Seyler P, Etcheber H et al (2005) Spatial and seasonal dynamics of total suspended sediment and organic carbon species in the Congo River. Glob Biogeochem Cycles 19, GB4019

    Article  CAS  Google Scholar 

  • Creed IF, Mcknight DM, Pellerin BA et al (2015) The river as a chemostat: fresh perspectives on dissolved organic matter flowing down the river continuum. Can J Fish Aquat Sci 72:1272–1285. doi:10.1139/cjfas-2014-0400

    Article  Google Scholar 

  • Cullmann J, Junk WJ, Weber G, Schmitz GH (2006) The impact of seepage influx on cation content of a Central Amazonian floodplain lake. J Hydrol 328:297–305

    Article  CAS  Google Scholar 

  • Dai A, Trenberth KE (2002) Estimates of freshwater discharge from continents: latitudinal and seasonal variations. J Hydrometeorol 3:660–687

    Article  Google Scholar 

  • Devol AH, Forsberg BR, Richey JE, Pimentel TP (1995) Seasonal variation in chemical distributions in the Amazon (Solimões) river: a multiyear time series. Glob Biogeochem Cycles 9:307–328

    Article  CAS  Google Scholar 

  • Dijkshoorn K, Huting J, Tempel P (2005) Update of the 1:5 million Soil and Terrain Database for Latin America and the Caribbean (SOTERLAC)

  • Dunne T, Mertes LAK, Meade RH et al (1998) Exchanges of sediment between the flood plain and channel of the Amazon River in Brazil. Geol Soc Am Bull 110:450–467

    Article  Google Scholar 

  • Dupré B, Dessert C, Oliva P et al (2003) Rivers, chemical weathering and Earth’s climate. C R Geosci 335:1141–1160

    Article  CAS  Google Scholar 

  • Edmond JM, Palmer MR, Measures CI et al (1996) Fluvial geochemistry of the eastern slope of the northeastern Andes and its foredeep in the drainage of the Orinoco in Colombia and Venezuela. Geochim Cosmochim Acta 60:2949–2974

    Article  CAS  Google Scholar 

  • Edokpa DA, Evans MG, Rothwell JJ (2015) High fluvial export of dissolved organic nitrogen from a peatland catchment with elevated inorganic nitrogen deposition. Sci Total Environ 532:711–722

    Article  CAS  Google Scholar 

  • Eiriksdottir ES, Gislason SR, Oelkers EH (2013) Does temperature or runoff control the feedback between chemical denudation and climate? Insights from NE Iceland. Geochim Cosmochim Acta 107:65–81

    Article  CAS  Google Scholar 

  • Espinoza VJC, Guyot JL, Ronchail J et al (2009a) Contrasting regional discharge evolution in the Amazon Basin. J Hydrol 375:297–311

    Article  Google Scholar 

  • Espinoza VJ-C, Ronchail J, Guyot J-L et al (2009b) Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, and Ecuador). Int J Climatol 29:1574–1594

    Article  Google Scholar 

  • Espinoza VR, Martinez J-M, Le Texier M et al (2013) A study of sediment transport in the Madeira River, Brazil, using MODIS remote-sensing images. J S Am Earth Sci 44:44–54

    Google Scholar 

  • Evans C, Davies TD (1998) Causes of concentration/discharge hysteresis and its potential as a tool for analysis of episode hydrochemistry. Water Resour Res 34:129–137

    Article  CAS  Google Scholar 

  • Filizola N, Guyot JL (2009) Suspended sediment yields in the Amazon basin: an assessment using the Brazilian national data set. Hydrol Process 23:3207–3215

    Article  Google Scholar 

  • Filizola N, Guyot J-L, Wittmann H, et al. (2011) The significance of suspended sediment transport determination on the Amazonian hydrological scenario. In: Andrew J. Manning Ed. Sediment transport in aquatic environments

  • Furch K, Junk WJ, Klinge H (1982) Unusual chemistry of natural waters from the Amazon Region. Acta Cient Venez 33:269–273

    CAS  Google Scholar 

  • Gaillardet J, Dupré B, Allègre C-J, Négrel P (1997) Chemical and physical denudation in the Amazon River Basin. Chem Geol 142:141–173

    Article  CAS  Google Scholar 

  • Gaillardet J, Dupre B, Allègre CJ (1999) Geochemistry of large river suspended sediments: silicate weathering or recycling tracer? Geochim Cosmochim Acta 63:4037–4051

    Article  Google Scholar 

  • Galy A, France-Lanord C (1999) Weathering processes in the Ganges-Brahmaputra basin and the riverine alkalinity budget. Chem Geol 159:31–60

    Article  CAS  Google Scholar 

  • Garreaud RD, Vuille M, Compagnucci R, Marengo J (2009) Present-day South American climate. Palaeogeogr Palaeoclimatol Palaeoecol 281:180–195

    Article  Google Scholar 

  • Getirana ACV, Bonnet MP, Rotunno Filho OC et al (2010) Hydrological modelling and water balance of the Negro River basin: evaluation based on in situ and spatial altimetry data. Hydrol Process 24:3219–3236

    Article  Google Scholar 

  • Gibbs RJ (1967a) Amazon rivers: environmental factors that control its dissolved and suspended load. Science 156:1734–1737

    Article  CAS  Google Scholar 

  • Gibbs RJ (1967b) The geochemistry of the Amazon River system: part I. The factors that control the salinity and the composition and concentration of the suspended solids. Geol Soc Am Bull 78:1203–1232

    Article  CAS  Google Scholar 

  • Gibbs RJ (1972) Water chemistry of the Amazon River. Geochim Cosmochim Acta 36:1061–1066

    Article  CAS  Google Scholar 

  • Giorgi F, Diffenbaugh N (2008) Developing regional climate change scenarios for use in assessment of effects on human health and disease. Clim Res 36:141–151

    Article  Google Scholar 

  • Gislason SR, Oelkers EH, Eiriksdottir ES et al (2009) Direct evidence of the feedback between climate and weathering. Earth Planet Sci Lett 277:213–222

    Article  CAS  Google Scholar 

  • Godderis Y, François LM, Probst A et al (2006) Modelling weathering processes at the catchment scale: the WITCH numerical. Geochim Cosmochim Acta 70:1128–1147

    Article  CAS  Google Scholar 

  • Godsey SE, Kirchner JW, Clow DW (2009) Concentration–discharge relationships reflect chemostatic characteristics of US catchments. Hydrol Process 23:1844–1864

    Article  CAS  Google Scholar 

  • Goudie AS, Viles HA (2012) Weathering and the global carbon cycle: geomorphological perspectives. Earth Sci Rev 113:59–71

    Article  Google Scholar 

  • GRDC (2014) Global freshwater fluxes into the world oceans/online provided by Global Runoff Data Centre. ed. Koblenz: Federal Institute of Hydrology (BfG), 2014

  • Guan K, Thompson SE, Harman CJ et al (2011) Spatiotemporal scaling of hydrological and agrochemical export dynamics in a tile‐drained midwestern watershed. Water Resour Res 47:W00J02

    Article  Google Scholar 

  • Guimberteau M, Drapeau G, Ronchail J et al (2012) Discharge simulation in the sub-basins of the Amazon using ORCHIDEE forced by new datasets. Hydrol Earth Syst Sci 16:911–935

    Article  Google Scholar 

  • Guyot J-L (1993) Hydrogéochimie des fleuves de l’Amazonie Bolivienne. ORSTOM, Paris

    Google Scholar 

  • Guyot JL, Jouanneau JM, Quintanilla J, Wasson JG (1993) Les flux de matières dissoutes et particulaires exportés des Andes par le Rio Béni (Amazonie bolivienne), en période de crue. Geodin Acta 6:233–241

    Article  Google Scholar 

  • Guyot JL, Filizola NP, Quintanilla J, Cortes J (1996) Dissolved solids and suspended sediment yields in the Rio Madeira basin, from the Bolivian Andes to the Amazon. In: IAHS (Ed.), IAHS, pp. 55–63

  • Guyot JL, Quintanilla J, Martinez J, Calle H (1998) Regional characteristics of the hydrochemistry in the humid tropics of Bolivian Amazonia. In: Hydrology in the humid tropic environment. Johnson A.I. et Fernandez Jauregui C. IAHS Publ., pp. 447–457

  • Guyot JL, Filizola N, Laraque A (2005) The suspended sediment flux of the River Amazon at Obidos, Brazil, 1995–2003. In: Walling DE, Horowitz AJ (eds) Paper read at 7th IAHS Scientific Assembly—Sediment Budgets. Foz do Iguaco (Brazil), pp 347–354

  • Herndon EM, Dere AL, Sullivan PL et al (2015) Biotic controls on solute distribution and transport in headwater catchments. Hydrol Earth Syst Sci 12:213–243

    Article  Google Scholar 

  • House WA, Warwick MS (1998) Hysteresis of solute concentration/discharge relationship in rivers during storms. Water Resour Res 32:2279–2290

    CAS  Google Scholar 

  • Insel N, Poulsen CJ, Ehlers TA (2009) Influence of the Andes Mountains on South American moisture transport, convection, and precipitation. Clim Dyn. doi:10.1007/s00382-009-0637-1

    Google Scholar 

  • Jansson MB (2002) Determining sediment source areas in a tropical river basin, Costa Rica. CATENA 47:63–84

  • Jawitz JW, Mitchell J (2011) Temporal inequality in catchment discharge and solute export. Water Resources Research 47:W00J14

    Article  CAS  Google Scholar 

  • Junk W, Piedade M (1997) Plant life in the floodplain with special reference to herbaceous plants. Springer, Heidelberg

    Book  Google Scholar 

  • Kirchner JW (2003) A double paradox in catchment hydrology and geochemistry. Hydrol Process 17:871–874

    Article  Google Scholar 

  • Konhauser KO, Fyfe WS, Kronberg BI (1994) Multi-element chemistry of some Amazonian waters and soils. Chem Geol 111:155–175

    Article  Google Scholar 

  • Laraque A, Bernal C, Bourrel L et al (2009) Sediment budget of the Napo River, Amazon basin, Ecuador and Peru. Hydrol Process 23:3509–3524

    Article  Google Scholar 

  • Laraque A, Moquet JS, Alkattan R et al (2013) Seasonal variability of total dissolved fluxes and origin of major dissolved elements within a large tropical river: the Orinoco, Venezuela. J S Am Earth Sci 44:4–17

    Article  CAS  Google Scholar 

  • Lasaga AC, Berner RA (1998) Fundamental aspects of quantitative models for geochemical cycles. Chem Geol 145:161–175

    Article  CAS  Google Scholar 

  • Lavado Casimiro WS, Labat D, Ronchail J, et al. (2012) Trends in rainfall and temperature in the Peruvian Amazon–Andes basin over the last 40 years (1965–2007). Hydrological Processes On line

  • Leon JG, Pedrozo FL (2015) Lithological and hydrological controls on water composition: evaporite dissolution and glacial weathering in the south central Andes of Argentina (33°–34°S). Hydrol Process 29:1156–1172

  • Li Z, Gao W, Zhang M, Gao W (2012) Variations in suspended and dissolved matter fluxes from glacial and non-glacial catchments during a melt season at Urumqi River, eastern Tianshan, central Asia. Catena 95:42–49

    Article  CAS  Google Scholar 

  • Li DD, Jacobson AD, McInerney DJ (2014) A reactive transport model for examining tectonic and climatic controls on chemical weathering and atmospheric CO2 consumption in granitic regolith. Chem Geol 365:30–42

  • Lucas Y (2001) The role of plants in controlling rates and products of weathering: importance of biological pumping. Annu Rev Earth Planet Sci 29:135–163

    Article  CAS  Google Scholar 

  • Lupker M, France-Lanord C, Lavé J et al (2012) Predominant floodplain over mountain weathering of Himalayan sediments (Ganga Basin). Geochim Cosmochim Acta 84:410–432

    Article  CAS  Google Scholar 

  • Magrin G, Marengo J, Boulanger J-P, et al. (2014) Chapter 27. Central and South America. Climate change 2014: impacts, adaptation, and vulnerability. Working Group II of the IPCC. Volume II: Regional Aspects Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change

  • Maher K (2010) The dependence of chemical weathering rates on fluid residence time. Earth Planet Sci Lett 294:101–110

    Article  CAS  Google Scholar 

  • Maher K (2011) The role of fluid residence time and topographic scales in determining chemical fluxes from landscapes. Earth Planet Sci Lett 312:48–58

    Article  CAS  Google Scholar 

  • Maher K, Druhan J (2014) Relationships between the transit time of water and the fluxes of weathered elements through the critical zone. Earth Planet Sci 10:16–22

    Article  CAS  Google Scholar 

  • Maher K, Chamberlain CP (2014) Hydrologic regulation of chemical weathering and the geologic carbon cycle. Science 343:1502–1504

  • Marengo J (2004) Interdecadal variability and trends of rainfall across the Amazon basin. Theoretical and applied climatology 79–96

  • Marengo JA, Chou SC, Kay G et al (2011) Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: climatology and regional analyses for the Amazon, São Francisco and the Paraná River Basins. Clim Dyn 38:1829–1848

    Article  Google Scholar 

  • Marengo J, Liebmann B, Grimm AM et al (2012) Review—recent developments on the South American monsoon system. Int J Climatol 32:1–21

    Article  Google Scholar 

  • Markewitz D, Davidson EA, Figueiredo RDO et al (2001) Control of cation concentrations in stream waters by surface soil processes in an Amazonian watershed. Nature 410:802–805

    Article  CAS  Google Scholar 

  • Markewitz D, Resende J, Parron L et al (2006) Dissolved rainfall inputs and streamwater outputs in an undisturbed watershed on highly weathered soils in the Brazilian cerrado. Hydrol Process 20:2615–2639

    Article  CAS  Google Scholar 

  • Martinez J-M, Guyot J-L, Filizola N, Sondag F (2009) Increase in suspended sediment discharge of the Amazon River assessed by monitoring network and satellite data. Catena 79:257–264

    Article  Google Scholar 

  • McClain ME, Naiman RJ (2008) Andean influences on the biogeochemistry and ecology of the Amazon River. BioScience 58:325–338

  • Meade RH (1994) Suspended sediments of the modern Amazon and Orinoco Rivers. In: Quaternary of South America (M. Iriondo, Ed.). Quaternary International. 21:29–39

  • Meade RH, Dunne T, Richey JE et al (1985) Storage and remobilization of suspended sediment in the lower Amazon River of Brazil. Science 228:488–490

    Article  CAS  Google Scholar 

  • Meade RH, Rayol JM, Conceiteo SC, Natividade JRG (1991) Backwater effects in the Amazon River basin of Brazil. Environ Geol Water Sci 18:105–114

    Article  Google Scholar 

  • Meybeck M (2003) Global occurence of major elements in rivers. In: HD Holland, K.K. Turekian (eds) Treatise on geochemistry. Volume 5: surface and ground water, weathering and soils (J. Drever ed), Pergamon: 207–224

  • Meybeck M, Pasco A, Ragu A (1996) Evaluation des flux polluants dans les eaux superficielles Etude inter-Agence de l’eau

  • Milliman JD, Farnsworth KL (2011) River discharge to the coastal ocean—a global synthesis. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Mills B, Lenton TM, Watson AJ (2014) Proterozoic oxygen rise linked to shifting balance between seafloor and terrestrial weathering. Proc Natl Acad Sci 111:9073–9078

    Article  CAS  Google Scholar 

  • Moatar F, Birgand F, Meybeck M et al (2009) Incertitudes sur les métriques de qualité des cours d’eau (médianes et quantiles de concentrations, flux, cas des nutriments) évaluées a partir de suivis discrets. La Houille Blanche 3:68–76

    Article  Google Scholar 

  • Moon S, Chamberlain CP, Hilley GE (2014) New estimates of silicate weathering rates and their uncertainties in global rivers. Geochim Cosmochim Acta 134:257–274

    Article  CAS  Google Scholar 

  • Moquet J-S, Crave A, Viers J et al (2011) Chemical weathering and atmospheric/soil CO2 uptake in the Andean and Foreland Amazon basins. Chem Geol 287:1–26

    Article  CAS  Google Scholar 

  • Moquet JS, Maurice L, Crave A et al (2014a) Cl and Na fluxes in an Andean foreland basin of the Peruvian Amazon: an anthropogenic impact evidence. Aquat Geochem 20:613–637

    Article  CAS  Google Scholar 

  • Moquet JS, Viers J, Crave A, et al. (2014a) Comparison between silicate weathering and physical erosion rates in Andean basins of Amazon River. Procedia earth & planetary science. Paris France, pp 275–279

  • Moreira-Turcq P, Seyler P, Guyot JL, Etcheber H (2003) Exportation of organic carbon from the Amazon River and its main tributaries. Hydrol Process 17:1329–1344

    Article  Google Scholar 

  • Mortatti J, Probst J-L (2003) Silicate rock weathering and atmospheric/soil CO2 uptake in the Amazon basin estimated from river water geochemistry: seasonal and spatial variations. Chem Geol 197:177–196

    Article  CAS  Google Scholar 

  • Mortatti J, Moares JM, Victoria RL, Martinelli LA (1997) Hydrograph separation of the Amazon River: a methodological study. Aquat Geochem 3:117–128

    Article  Google Scholar 

  • Négrel P, Roy S, Petelet-Giraud E et al (2007) Long-term fluxes of dissolved and suspended matter in the Ebro River Basin (Spain). J Hydrol 342:249–260

    Article  Google Scholar 

  • Nkounkou RR, Probst JL (1987) Hydrology and geochemistry of the Congo river system. Mitt Geol–Palaont Inst Univ Hamburg, SCOPErUNEP 64:483–508

  • Nogués Paegle J, Mechoso CR, Fu R et al (2002) Progress in Pan American CLIVAR research: understanding the South American monsoon. Meteorologica 27:1–30

    Google Scholar 

  • O’Connor EM, Mc Connell C, Lembcke D, Winter JG (2011) Estimation of total phosphorus loads for a large, flashy river of a highly developed watershed—seasonal and hysteresis effects. J Great Lakes Res 37:26–35

    Article  CAS  Google Scholar 

  • Ollivier P, Radakovitch O, Hamelin B (2006) Unusual variations of dissolved As, Sb and Ni in the Rhône River during flood events. J Geochem Explor 88:394–398

    Article  CAS  Google Scholar 

  • Oltman RE (1967) Reconnaissance investigations of the discharge and water quality of the Amazon. Bel‚m, pp 163–185

  • Oltman RE, Sternberg HO, Ames FC, Davis LC (1964) Amazon River investigations reconnaissance measurements of July 1963. Geol Surv Circ 486:1–15

    Google Scholar 

  • Paiva RCD, Buarque DC, Collischonn W et al (2013) Large-scale hydrologic and hydrodynamic modeling of the Amazon River basin. Water Resour Res 49:1226–1243

    Article  Google Scholar 

  • Pepin E, Guyot JL, Armijos E et al (2013) Climatic control on eastern Andean denudation rates (Central Cordillera from Ecuador to Bolivia). J S Am Earth Sci 44:85–93

    Article  Google Scholar 

  • Raymo ME, Ruddiman WF (1992) Tectonic forcing of late Cenozoic mountain building on ocean geochemical cycles. Geology 359:117–122

    CAS  Google Scholar 

  • Richey JE, Meade RH, Salati E et al (1986) Water discharge and suspended sediment concentrations in the Amazon River. Water Resour Res 22:756–764

    Article  CAS  Google Scholar 

  • Rios-Villamizar EA, Piedade MTF, da Costa JG et al (2014) Chemistry of different Amazonian water types for river classification: a preliminary review. WIT Trans Ecol Environ. doi:10.2495/13WS0021

  • Roche MA, Fernandez Jauregui C (1988) Water resources, salinity and salt yields of the rivers of the Bolivian Amazon. J Hydrol 101:305–331

    Article  CAS  Google Scholar 

  • Roche MA, Aliaga A, Campos J et al (1990) Hétérogénéité des précipitations sur la cordillère des Andes boliviennes. In: MA LHE (ed) Hydrology in mountainous regions. I. Hydrological measurements, the water cycle. IAHS, Lausanne (Suisse), pp 381–388

    Google Scholar 

  • Roddaz M, Viers J, Brusset S et al (2005) Sediment provenances and drainage evolution of the Neogene Amazonian foreland basin. Earth Planet Sci Lett 239:57–78

    Article  CAS  Google Scholar 

  • Rose S (2003) Comparative solute–discharge hysteresis analysis for an urbanized and a “control basin” in the Georgia (USA) Piedmont. J Hydrol 284:45–56

    Article  CAS  Google Scholar 

  • Roy S, Gaillardet J, Allègre CJ (1999) Geochemistry of dissolved and suspended loads of the Seine River, France: anthropogenic impact, carbonate and silicate weathering. Geochim Cosmochim Acta 63:1277–1292

    Article  CAS  Google Scholar 

  • Sanchez LSH, Horbe A, Moquet JS et al (2015) Variação espaço-temporal do material inorgânico dissolvido na bacia Amazônica. Acta Amazon 45

  • Santini W, Martinez JM, Espinoza VR et al (2014) Sediment budget in the drainage basin of the Ucayali River, an Andean tributary of the Amazon. IAHS Publ, Louisiana, pp 320–325

    Google Scholar 

  • Sioli H (1964) General features of the limnology of Amazonia. VerhInternatVereinLimnol 15:1053–1058

    Google Scholar 

  • Sondag F, Guyot JL, Moquet JS et al (2010) Suspended sediment and dissolved load budgets of two Amazonian rivers from French Guiana: Maroni and Oyapock rivers. Hydrol Process 24:1433–1445

    Article  Google Scholar 

  • Stallard RF (1985) River chemistry, geology, geomorphology, and soils in the Amazon and Orinoco Basins. In: JI Drever (Ed). The chemistry of weathering. D Reidel Publishing Company 293–316

  • Stallard RF, Edmond JM (1983) Geochemistry of the Amazon. 2. The influence of geology and weathering environment on the dissolved load. J Geophys Res 88:9671–9688

    Article  CAS  Google Scholar 

  • Stallard RF, Edmond JM (1987) Geochemistry of the Amazon. 3. Weathering chemistry and limits to dissolved inputs. J Geophys Res 92:8293–8302

    Article  CAS  Google Scholar 

  • Tardy Y, Bustillo V, Roquin C et al (2005) The Amazon. Bio-geochemistry applied to river basin management: part I. Hydro-climatology, hydrograph separation, mass transfer balances, stable isotopes, and modelling. Appl Geochem 20:1746–1829

    Article  CAS  Google Scholar 

  • Torres MA, West AJ, Clark KE (2015) Geomorphic regime modulates hydrologic control of chemical weathering in the Andes–Amazon. Geochim Cosmochim Acta 166:105–128

  • Townsend-Small A, McClain ME, Hall B et al (2008) Suspended sediments and organic matter in mountain headwaters of the Amazon River: results from a 1-year time series study in the central Peruvian Andes. Geochim Cosmochim Acta 72:732–740

    Article  CAS  Google Scholar 

  • Vauchel P (2005) HYDRACCESS: software for management and processing of hydro-meteorological data. www.mpl.ird.fr/hybam/outils/hydraccess

  • Vera C, Higgins W, Amador J et al (2006) Toward a unified view of the American monsoon systems. Am Meteorol Soc 19:4977–5000

    Google Scholar 

  • Viers J, Barroux G, Pinelli M et al (2005) The influence of the Amazonian floodplain ecosystems on the trace element dynamics of the Amazon River mainstem (Brazil). Sci Total Environ 339:219–232

    Article  CAS  Google Scholar 

  • Von Blanckenburg F, Bouchez J, Ibarra DE, Maher K (2015) Stable runoff and weathering fluxes into the oceans over Quaternary climate cycles. Nat Geosci 8:538–542. doi:10.1038/NGEO2452

  • Walling DE, Webb BW (1982) Sediment availability and the prediction of storm-period sediment yields. Int Assoc Hydrol Sci Publ 137:327–337

  • Walling DE, Webb BW (1983) Patterns of sediment yield. In: Gregory KJ (ed) Background to palaeohydrology. Wiley, Chichester, pp 69–100

    Google Scholar 

  • Wilcke W, Yasin S, Valarezo C, Zech W (2001) Change in water quality during the passage through a tropical montane rain forest in Ecuador. Biogeochemistry 55:45–72

    Article  CAS  Google Scholar 

  • Wilcke W, Valladarez H, Stoyan R et al (2003) Soil properties on a chronosequence of landslides in montane rain forest, Ecuador. Catena 53:79–95

    Article  Google Scholar 

  • Wood PA (1977) Controls of variation in suspended sediment concentration in the river Rother, West Sussex, England. Sedimentology 24:437–445

  • Yuan F, Mivamoto S, Anand S (2007) Changes in major element hydrochemistry of the Pecos River in the American Southwest since 1935. Appl Geochem 22:1798–1813. doi:10.1016/j.apgeochem.2007.03.036

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We especially thank Daniel Ibarra (Stanford University) for his constructive recommendations under the review process. We also especially thank Dr. Julien Bouchez (CNRS-IPGP) for insightful discussions and his help to improve the manuscript. This work was funded by the French Institut de Recherche pour le Développement (IRD) and the French Institut des Sciences de l’Univers (INSU) through the SO-HYBAM Observatory. We especially thank Pascal Fraizy, Philippe Vauchel, William Santini, Elisa Armijos, Francis Sondag, Nore Arevalo, the Servicio Nacional de Meteorología e Hidrología—Lima, Peru and La Paz, Bolivia (SENAMHI), the Instituto Nacional de Meteorología e Hidrología—Quito, Ecuador (INAMHI), Agência Nacional de Águas—Brasília, Brazil (ANA), the Universidad Nacional Agraria de La Molina—Lima, Peru (UNALM), the Universidad Mayor de San Andres—La Paz, Bolivia (UMSA), Universidade de Brasília—Brazil (UNB), Universidade do Estado de Amazonas—Manaus, Brazil (UEA) and all members of the SO-HYBAM (Hydrogeodynamics of the Amazon basin), for providing hydrological and water chemistry data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Sébastien Moquet.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Monthly frequency solutes measurements (small symbols) and monthly averages (large symbols and lines) plotted against discharge and averages discharge, respectively, at Obidos gauging station (the discharge of the sampled date is considered here). Simple dilution curves (concentration variability of a constant flux) are added for reference. (JPEG 276 kb)

Table S1

Interannual mensual flux calculation since concentration (C) and discharge (Q) data. (Modified from Moatar et al. 2009) (DOCX 18 kb)

Table S2

Calculation of annual fluxes at OBI and ITA stations following the flux calculation methods reported in Table S1 for the period 2003–2012. The TDS flux at ALT has been calculated from the average of the TDS concentration of the 2 samples collected at ALT multiplied by the yearly discharge the TDS flux at this station is 5.8 × 106 t year−1. The Amazon flux corresponds to the sum of OBI, ITA and ALT TDS fluxes. Even considering a 100 % error at ALT gauging station, it would not significantly influence the Amazon budget because this river contributes only to around 2 % to the Amazon TDS production. (DOCX 16 kb)

Table S3

Linear regression parameters describing solutes concentration (mmol L−1) and conductivity (μS cm−1) as a function of the discharge (m3 s−1) (Eq. 1). Errors indicate ±1 standard error (SE). The MAE% corresponds to the mean absolute percentage error. (DOCX 38.0 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moquet, JS., Guyot, JL., Crave, A. et al. Amazon River dissolved load: temporal dynamics and annual budget from the Andes to the ocean. Environ Sci Pollut Res 23, 11405–11429 (2016). https://doi.org/10.1007/s11356-015-5503-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5503-6

Keywords

Navigation