We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Advertisement

Log in

Advanced applications of nanotechnology in veterinary medicine

  • Nanotechnology, Nanopollution, Nanotoxicology and Nanomedicine (NNNN)
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The invention of new techniques to manipulate materials at their nanoscale had an evolutionary effect on various medical sciences. At the time, there are thousands of nanomaterials which can be divided according to their shape, origin, or their application. The nanotechnology provided new solutions for old problems. In medical sciences, they are used for diagnostic or therapeutic purposes. They can also be applied in the preparation of nanovaccines and nanoadjuvants. Their use in the treatment of cancer and in gene therapy opened the door for a new era in medicine. Recently, various applications of nanotechnology started to find their way in the veterinary sector. They increasingly invade animal therapeutics, diagnostics, production of veterinary vaccines, farm disinfectants, for animal breeding and reproduction, and even the field of animal nutrition. Their replacement of commonly used antibiotics directly reflects on the public health. By so doing, they minimize the problem of drug resistance in both human and veterinary medicine, and the problem of drug residues in milk and meat. In addition, they have a great economic impact, by minimizing the amounts of discarded milk and the number of culled calves in dairy herds. Nanotechnology was also applied to develop pet care products and hygienic articles. The present review discusses the advantage of using nanomaterials compared to their counterparts, the various classes of nanoparticles, and illustrates the applications and the role of nanotechnology in the field of veterinary medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • A Joanitti G, P Silva L (2014) The emerging potential of by-products as platforms for drug delivery systems. Curr Drug Targets 15:478–485

    Article  CAS  Google Scholar 

  • Alshatwi AA, Athinarayanan J, Periasamy VS (2015) Green synthesis of bimetallic Au@ Pt nanostructures and their application for proliferation inhibition and apoptosis induction in human cervical cancer cell. J Mater Sci Mater Med 26:148

    Article  CAS  Google Scholar 

  • Anand M (2015) Study of nanoparticles and their multiple applications for nanoelectronics. International Journal of Advanced Research in Computer Science and Software Engineering 5:1271–1276

  • Anton N, Vandamme TF (2011) Nano-emulsions and micro-emulsions: clarifications of the critical differences. Pharm Res 28:978–985

    Article  CAS  Google Scholar 

  • Awate S, Babiuk LAB, Mutwiri G (2013) Mechanisms of action of adjuvants. Front Immunol 4:114

    Article  CAS  Google Scholar 

  • Bakker-Woudenberg IA, Schiffelers RM, Storm G, Becker MJ, Guo L (2005) Long-circulating sterically stabilized liposomes in the treatment of infections. Methods Enzymol 391:228–260

  • Bellocq NC, Pun SH, Jensen GS, Davis ME (2003) Transferrin-containing, cyclodextrin polymer-based particles for tumor-targeted gene delivery. Bioconjug Chem 14:1122–1132

    Article  CAS  Google Scholar 

  • Bielinska AU, Janczak KW, Landers JJ, Makidon P, Sower LE, Peterson JW, Baker JR (2007) Mucosal immunization with a novel nanoemulsion-based recombinant anthrax protective antigen vaccine protects against Bacillus anthracis spore challenge. Infect Immun 75:4020–4029

    Article  CAS  Google Scholar 

  • Casals E, Gusta MF, Cobaleda-Siles M, Garcia-Sanz A, Puntes VF (2017) Cancer resistance to treatment and antiresistance tools offered by multimodal multifunctional nanoparticles. Cancer Nanotechnol 8:7

    Article  CAS  Google Scholar 

  • Chakravarthi VP, Balaji SN (2010) Applications of nanotechnology in veterinary medicine. Veterinary World 3(10):477–480

  • Chapman S, Dobrovolskaia M, Farahani K, Goodwin A, Joshi A, Lee H, Meade T, Pomper M, Ptak K, Rao J (2013) Nanoparticles for cancer imaging: the good, the bad, and the promise. Nano Today 8:454–460

    Article  CAS  Google Scholar 

  • Chen SC, Jones DH, Fynan EF, Farrar GH, Clegg JCS, Greenberg HB, Herrmann JE (1998) Protective immunity induced by oral immunization with a rotavirus DNA vaccine encapsulated in microparticles. J Virol 72:5757–5761

    Article  CAS  Google Scholar 

  • Chen Y-S, Hung Y-C, Lin W-H, Huang GS (2010) Assessment of gold nanoparticles as a size-dependent vaccine carrier for enhancing the antibody response against synthetic foot-and-mouth disease virus peptide. Nanotechnology 21:195101

    Article  CAS  Google Scholar 

  • Chowdhury A, Kunjiappan S, Panneerselvam T, Somasundaram B, Bhattacharjee C (2017) Nanotechnology and nanocarrier-based approaches on treatment of degenerative diseases. Int Nano Lett 7:91–122

    Article  CAS  Google Scholar 

  • Conway MA, Madrigal-Estebas L, McClean S, Brayden DJ, Mills KH (2001) Protection against Bordetella pertussis infection following parenteral or oral immunization with antigens entrapped in biodegradable particles: effect of formulation and route of immunization on induction of Th1 and Th2 cells. Vaccine 19:1940–1950

    Article  CAS  Google Scholar 

  • Cormode DP, Sanchez-Gaytan BL, Mieszawska AJ, Fayad ZA, Mulder WJ (2013) Inorganic nanocrystals as contrast agents in MRI: synthesis, coating and introduction of multifunctionality. NMR Biomed 26:766–780

    Article  CAS  Google Scholar 

  • Danesh-Bahreini MA, Shokri J, Samiei A, Kamali-Sarvestani E, Barzegar-Jalali M, Mohammadi-Samani S (2011) Nanovaccine for leishmaniasis: preparation of chitosan nanoparticles containing Leishmania superoxide dismutase and evaluation of its immunogenicity in BALB/c mice. Int J Nanomedicine 6:835

    CAS  Google Scholar 

  • de Ilarduya CT, Sun Y, Düzgüneş N (2010) Gene delivery by lipoplexes and polyplexes. Eur J Pharm Sci 40:159–170

    Article  CAS  Google Scholar 

  • Dobrovolskaia MA, Shurin M, Shvedova AA (2016) Current understanding of interactions between nanoparticles and the immune system. Toxicol Appl Pharmacol 299:78–89

    Article  CAS  Google Scholar 

  • Elgqvist J (2017) Nanoparticles as theranostic vehicles in experimental and clinical applications—focus on prostate and breast cancer. Int J Mol Sci 18:1102

    Article  CAS  Google Scholar 

  • Erathodiyil N, Ying JY (2011) Functionalization of inorganic nanoparticles for bioimaging applications. Acc Chem Res 44:925–935

    Article  CAS  Google Scholar 

  • Fakhri A, Tahami S, Naji M (2017) Synthesis and characterization of core-shell bimetallic nanoparticles for synergistic antimicrobial effect studies in combination with doxycycline on burn specific pathogens. J Photochem Photobiol B Biol 169:21–26

    Article  CAS  Google Scholar 

  • Fernando GJ, Chen X, Prow TW, Crichton ML, Fairmaid EJ, Roberts MS, Frazer IH, Brown LE, Kendall MA (2010) Potent immunity to low doses of influenza vaccine by probabilistic guided micro-targeted skin delivery in a mouse model. PLoS One 5:e10266

    Article  CAS  Google Scholar 

  • Florindo H, Pandit S, Lacerda L, Gonçalves L, Alpar H, Almeida A (2009) The enhancement of the immune response against S. equi antigens through the intranasal administration of poly-ɛ-caprolactone-based nanoparticles. Biomaterials 30:879–891

    Article  CAS  Google Scholar 

  • Freitas RA (2005) Current status of nanomedicine and medical nanorobotics. J Comput Theor Nanosci 2:1–25

    CAS  Google Scholar 

  • Freitas RA Jr (2005) Microbivores: artificial mechanical phagocytes using digest and discharge protocol. J Evol Technol 14:1–52

    Google Scholar 

  • Greenwood DL, Dynon K, Kalkanidis M, Xiang S, Plebanski M, Scheerlinck J-PY (2008) Vaccination against foot-and-mouth disease virus using peptides conjugated to nano-beads. Vaccine 26:2706–2713

    Article  CAS  Google Scholar 

  • Grgacic EV, Anderson DA (2006) Virus-like particles: passport to immune recognition. Methods 40:60–65

    Article  CAS  Google Scholar 

  • Hamouda T, Sutcliffe JA, Ciotti S, Baker JR (2011) Intranasal immunization of ferrets with commercial trivalent influenza vaccines formulated in a nanoemulsion-based adjuvant. Clin Vaccine Immunol, CVI 18:1167–1175

    Article  CAS  Google Scholar 

  • Harvey J (2010) Nanotechnology: a new revolution in primary care & diagnostics. available at https://medlink-uk.net/wp-content/uploads/pathprojectsnanotechnology2011/HarveyJ.pdf

  • He Q, Mitchell A, Morcol T, Bell SJ (2002) Calcium phosphate nanoparticles induce mucosal immunity and protection against herpes simplex virus type 2. Clin Diagn Lab Immunol 9:1021–1024

    CAS  Google Scholar 

  • Hirsch LR, Stafford RJ, Bankson J, Sershen SR, Rivera B, Price R, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci 100:13549–13554

    Article  CAS  Google Scholar 

  • Illum L, Jabbal-Gill I, Hinchcliffe M, Fisher A, Davis S (2001) Chitosan as a novel nasal delivery system for vaccines. Adv Drug Deliv Rev 51:81–96

    Article  CAS  Google Scholar 

  • Jahanshahi M, Babaei Z (2008) Protein nanoparticle: a unique system as drug delivery vehicles. Afr J Biotechnol 7:4926–4934

  • Jain SK, Sahni Y, Neetu R, Vidhi G (2011) Nanotoxicology: an emerging discipline. Vet World 4:35–40

  • Johansson HKL, Hansen JS, Elfving B, Lund SP, Kyjovska ZO, Loft S, Barfod KK, Jackson P, Vogel U, Hougaard KS (2017) Airway exposure to multi-walled carbon nanotubes disrupts the female reproductive cycle without affecting pregnancy outcomes in mice. Part Fibre Toxicol 14:17

    Article  CAS  Google Scholar 

  • Jung T, Kamm W, Breitenbach A, Hungerer K-D, Hundt E, Kissel T (2001) Tetanus toxoid loaded nanoparticles from sulfobutylated poly (vinyl alcohol)-graft-poly (lactide-co-glycolide): evaluation of antibody response after oral and nasal application in mice. Pharm Res 18:352–360

    Article  CAS  Google Scholar 

  • Jurj A, Braicu C, Pop L-A, Tomuleasa C, Gherman CD, Berindan-Neagoe I (2017) The new era of nanotechnology, an alternative to change cancer treatment. Drug Des Devel Ther 11:2871–2890

    Article  CAS  Google Scholar 

  • Kanekiyo M, Wei C-J, Yassine HM, McTamney PM, Boyington JC, Whittle JR, Rao SS, Kong W-P, Wang L, Nabel GJ (2013) Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature 499:102–106

    Article  CAS  Google Scholar 

  • Kang BK, Chon SK, Kim SH, Jeong SY, Kim MS, Cho SH, Lee HB, Khang G (2004) Controlled release of paclitaxel from microemulsion containing PLGA and evaluation of anti-tumor activity in vitro and in vivo. Int J Pharm 286:147–156

    Article  CAS  Google Scholar 

  • Karimi M, Avci P, Mobasseri R, Hamblin MR, Naderi-Manesh H (2013) The novel albumin–chitosan core–shell nanoparticles for gene delivery: preparation, optimization and cell uptake investigation. J Nanopart Res 15:1651

    Article  CAS  Google Scholar 

  • Kim SY, Doh HJ, Jang MH, Ha YJ, Chung SI, Park HJ (1999) Oral immunization with Helicobacter pylori-loaded poly (d, l-lactide-co-glycolide) nanoparticles. Helicobacter 4:33–39

    Article  CAS  Google Scholar 

  • Kim BY, Rutka JT, Chan WC (2010) Nanomedicine. N Engl J Med 363:2434–2443

    Article  CAS  Google Scholar 

  • Knapp CM, He J, Lister J, Whitehead KA (2016) Lipidoid nanoparticle mediated silencing of Mcl-1 induces apoptosis in mantle cell lymphoma. Exp Biol Med 241:1007–1013

    Article  CAS  Google Scholar 

  • Kommareddy S, Shenoy DB, Amiji MM (2007) Gelatin nanoparticles and their biofunctionalization. In: Nanotechnologies for the life sciences: Online

  • Krishnan SR, George SK (2014) Nanotherapeutics in cancer prevention, diagnosis and treatment. Pharmacology and Therapeutics, Sivakumar Joghi Thatha Gowder, IntechOpen. https://doi.org/10.5772/58419. Available from: https://www.intechopen.com/books/pharmacology-and-therapeutics/nanotherapeutics-incancer-prevention-diagnosis-and-treatment

    Google Scholar 

  • Kroubi M, Daulouede S, Karembe H, Jallouli Y, Howsam M, Mossalayi D, Vincendeau P, Betbeder D (2010) Development of a nanoparticulate formulation of diminazene to treat African trypanosomiasis. Nanotechnology 21:505102

    Article  CAS  Google Scholar 

  • Kudela D, Smith SA, May-Masnou A, Braun GB, Pallaoro A, Nguyen CK, Chuong TT, Nownes S, Allen R, Parker NR (2015) Clotting activity of polyphosphate-functionalized silica nanoparticles. Angew Chem Int Ed 54:4018–4022

    Article  CAS  Google Scholar 

  • Landers JJ, Cao Z, Lee I, Piehler LT, Myc PP, Myc A, Hamouda T, Galecki AT, Baker JR Jr (2002) Prevention of influenza pneumonitis by sialic acid–conjugated dendritic polymers. J Infect Dis 186:1222–1230

    Article  CAS  Google Scholar 

  • Latour R, Stutzenberger F, Sun Y, Rodgers J, Tzeng T (2003) Adhesion-specific nanoparticles for removal of Campylobacter jejuni from poultry. CSREES Grant (2000–2003), Clemson University (SC). Available online at http://www.clemson.edu (accessed June 10, 2003)

  • Lee SJ, Yhee JY, Kim SH, Kwon IC, Kim K (2013) Biocompatible gelatin nanoparticles for tumor-targeted delivery of polymerized siRNA in tumor-bearing mice. J Control Release 172:358–366

    Article  CAS  Google Scholar 

  • Liao C, Sun Q, Liang B, Shen J, Shuai X (2011) Targeting EGFR-overexpressing tumor cells using Cetuximab-immunomicelles loaded with doxorubicin and superparamagnetic iron oxide. Eur J Radiol 80:699–705

    Google Scholar 

  • Manuja A, Kumar B, Singh RK (2012) Nanotechnology developments: opportunities for animal health and production. Nanotechnol Dev 2:4

    Article  CAS  Google Scholar 

  • Maree S, Maree FF, Putterill JF, De Beer TA, Huismans H, Theron J (2016) Synthesis of empty African horse sickness virus particles. Virus Res 213:184–194

    Article  CAS  Google Scholar 

  • Meena N, Sahni Y, Thakur D, Singh R (2018) Applications of nanotechnology in veterinary therapeutics. Journal of Entomology and Zoology 6(2):167–175

  • Mieszawska AJ, Mulder WJ, Fayad ZA, Cormode DP (2013) Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol Pharm 10:831–847

    Article  CAS  Google Scholar 

  • Mishra B, Patel BB, Tiwari S (2010) Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine 6:9–24

    Article  CAS  Google Scholar 

  • Mishra A, Swain R, Mishra S, Panda N, Sethy K (2014) Growth performance and serum biochemical parameters as affected by nano zinc supplementation in layer chicks. Indian J Anim Nutr 31:384–388

    Google Scholar 

  • Mittal AK, Kumar S, Banerjee UC (2014) Quercetin and gallic acid mediated synthesis of bimetallic (silver and selenium) nanoparticles and their antitumor and antimicrobial potential. J Colloid Interface Sci 431:194–199

    Article  CAS  Google Scholar 

  • Moghaddam SH, Jebali A, Daliri K (2010) The use of Mgo-Sio2 nanocomposite for adsorption of aflatoxin in wheat flour samples. Nanocon. 10:12–14. avaialble athttp://nanocon2014.tanger.cz/files/proceedings/nanocon_10/lists/papers/524.pdf

  • Mohantya N, Palaib T, Prustyc B, Mohapatrad J (2014) An overview of nanomedicine in veterinary science. Vet Res 2:90–95

    Google Scholar 

  • Moon J-S, Lee S-H, Han S-H, Kim E-J, Cho H, Lee W, Kim M-K, Kim T-E, Park H-J, Rhee J-K (2016) Inhibition of hepatitis C virus in mouse models by lipidoid nanoparticle-mediated systemic delivery of siRNA against PRK2. Nanomedicine 12:1489–1498

    Article  CAS  Google Scholar 

  • Moyer TJ, Zmolek AC, Irvine DJ (2016) Beyond antigens and adjuvants: formulating future vaccines. J Clin Invest 126:799–808

    Article  Google Scholar 

  • Noad R, Roy P (2003) Virus-like particles as immunogens. Trends Microbiol 11:438–444

    Article  CAS  Google Scholar 

  • Ochoa-Repáraz J, Sesma B, Álvarez M, Renedo MJ, Irache JM, Gamazo C (2004) Humoral immune response in hens naturally infected with Salmonella enteritidis against outer membrane proteins and other surface structural antigens. Vet Res 35:291–298

    Article  CAS  Google Scholar 

  • Okamoto S, Matsuura M, Akagi T, Akashi M, Tanimoto T, Ishikawa T, Takahashi M, Yamanishi K, Mori Y (2009) Poly (γ-glutamic acid) nano-particles combined with mucosal influenza virus hemagglutinin vaccine protects against influenza virus infection in mice. Vaccine 27:5896–5905

    Article  CAS  Google Scholar 

  • Patil S, Kore K, Kumar P (2009) Nanotechnology and its applications in veterinary and animal science. Vet World 2:475–477

    Article  Google Scholar 

  • Prabhu RH, Patravale VB, Joshi MD (2015) Polymeric nanoparticles for targeted treatment in oncology: current insights. Int J Nanomedicine 10:1001

    CAS  Google Scholar 

  • Pushko P, Pumpens P, Grens E (2013) Development of virus-like particle technology from small highly symmetric to large complex virus-like particle structures. Intervirology 56:141–165

    Article  CAS  Google Scholar 

  • Rajendran D (2013) Application of nano minerals in animal production system. Res J Biotechnol 8:1–3

    CAS  Google Scholar 

  • Rapoport N, Gao Z, Kennedy A (2007) Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. J Natl Cancer Inst 99:1095–1106

    Article  CAS  Google Scholar 

  • Read RC, Naylor SC, Potter CW, Bond J, Jabbal-Gill I, Fisher A, Illum L, Jennings R (2005) Effective nasal influenza vaccine delivery using chitosan. Vaccine 23:4367–4374

    Article  CAS  Google Scholar 

  • Reilly RM (2007) Carbon nanotubes: potential benefits and risks of nanotechnology in nuclear medicine. J Nucl Med 48:1039–1042

    Article  CAS  Google Scholar 

  • Revia RA, Zhang M (2016) Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. Mater Today (Kidlington) 19:157–168

    Article  CAS  Google Scholar 

  • Riley MK, Vermerris W (2017) Recent advances in nanomaterials for gene delivery—a review. Nanomaterials 7:94

    Article  CAS  Google Scholar 

  • Rizzo LY, Theek B, Storm G, Kiessling F, Lammers T (2013) Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications. Curr Opin Biotechnol 24:1159–1166

    Article  CAS  Google Scholar 

  • Rodríguez-Burneo N, Busquets MA, Estelrich J (2017) Magnetic nanoemulsions: comparison between nanoemulsions formed by ultrasonication and by spontaneous emulsification. Nanomaterials 7:190

    Article  CAS  Google Scholar 

  • Sailor MJ, Park JH (2012) Hybrid nanoparticles for detection and treatment of cancer. Adv Mater 24:3779–3802

    Article  CAS  Google Scholar 

  • Saragusty J, Arav A (2011) Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification. Reproduction 141:1–19

    Article  CAS  Google Scholar 

  • Schneider M, Stracke F, Hansen S, Schaefer UF (2009) Nanoparticles and their interactions with the dermal barrier. Dermato-Endocrinology 1:197–206

    Article  CAS  Google Scholar 

  • Scott N (2007) Nanoscience in veterinary medicine. Vet Res Commun 31:139–144

    Article  Google Scholar 

  • Shchepelina O, Drachuk I, Gupta MK, Lin J, Tsukruk VV (2011) Silk-on-silk layer-by-layer microcapsules. Adv Mater 23:4655–4660

    Article  CAS  Google Scholar 

  • Shukla R, Cheryan M (2001) Zein: the industrial protein from corn. Ind Crop Prod 13:171–192

    Article  CAS  Google Scholar 

  • Soppimath KS, Aminabhavi TM, Dave AM, Kumbar SG, Rudzinski W (2002) Stimulus-responsive “smart” hydrogels as novel drug delivery systems. Drug Dev Ind Pharm 28:957–974

    Article  CAS  Google Scholar 

  • Sridharan K, Gogtay NJ (2016) Therapeutic nucleic acids: current clinical status. Br J Clin Pharmacol 82:659–672

    Article  Google Scholar 

  • Steinmetz NF (2010) Viral nanoparticles as platforms for next-generation therapeutics and imaging devices. Nanomedicine 6:634–641

    Article  CAS  Google Scholar 

  • Steinmetz NF, Ablack AL, Hickey JL, Ablack J, Manocha B, Mymryk JS, Luyt LG, Lewis JD (2011) Intravital imaging of human prostate cancer using viral nanoparticles targeted to gastrin-releasing peptide receptors. Small 7:1664–1672

    Article  CAS  Google Scholar 

  • Suzuki Y, Tanihara M, Nishimura Y, Suzuki K, Kakimaru Y, Shimizu Y (1998) A new drug delivery system with controlled release of antibiotic only in the presence of infection. J Biomed Mater Res 42:112–116

    Article  CAS  Google Scholar 

  • Swain PS, Rajendran D, Rao SB, Dominic G (2015) Preparation and effects of nano mineral particle feeding in livestock: a review. Vet World 8:888–891

    Article  CAS  Google Scholar 

  • Talukdar D, Sharma R, Sharma KA, Kumar R (2014) Drug resistance in tuberculosis: how to counter the menace? Curr Pharm Biotechnol 15:1158–1165

    Article  CAS  Google Scholar 

  • Thulasi A, Rajendran D, Jash S, Selvaraju S, Jose VL, Velusamy S, Mathivanan S (2013) Nanobiotechnology in animal nutrition. Satish Serial Publishing House, New Delhi

    Google Scholar 

  • Torres-Sangiao E, Holban AM, Gestal MC (2016) Advanced nanobiomaterials: vaccines, diagnosis and treatment of infectious diseases. Molecules 21:867

    Article  CAS  Google Scholar 

  • Troncarelli MZ, Brandão HM, Gern JC, Guimarães AS, Langoni H (2013) Nanotechnology and antimicrobials in veterinary medicine Badajoz, Spain. FORMATEX available at http://www.formatex.info/microbiology4/vol1/543-556.pdf

  • Underwood C, Van Eps A (2012) Nanomedicine and veterinary science: the reality and the practicality. Vet J 193:12–23

    Article  CAS  Google Scholar 

  • Venkatesan J, Kim S-K (2014) Nano-hydroxyapatite composite biomaterials for bone tissue engineering—a review. J Biomed Nanotechnol 10:3124–3140

    Article  CAS  Google Scholar 

  • Vila A, Sanchez A, Evora C, Soriano I, Vila Jato J, Alonso M (2004) PEG-PLA nanoparticles as carriers for nasal vaccine delivery. J Aerosol Med 17:174–185

    Article  CAS  Google Scholar 

  • Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29:2941–2953

    Article  CAS  Google Scholar 

  • Wu T-J, Chiu H-Y, Yu J, Cautela MP, Sarmento B, das Neves J, Catala C, Pazos-Perez N, Guerrini L, Alvarez-Puebla RA, Vranješ-Đurić S, Ignjatović NL (2018) Nanotechnologies for early diagnosis, in situ disease monitoring, and prevention. In: Uskoković V, Uskoković DP (eds) Nanotechnologies in preventive and regenerative medicine. Chapter 1, Elsevier, Amsterdam, p 1–92

    Google Scholar 

  • Xu J, Dai W, Wang Z, Chen B, Li Z, Fan X (2011) Intranasal vaccination with chitosan-DNA nanoparticles expressing pneumococcal surface antigen a protects mice against nasopharyngeal colonization by Streptococcus pneumoniae. Clin Vaccine Immunol 18:75–81

    Article  CAS  Google Scholar 

  • Yang Z, Sun L (2006) Effects of nanometre ZnO on growth performance of early weaned piglets. J Shanxi Agric Sci 3:577–588

    Google Scholar 

  • Yang X, Grailer JJ, Rowland IJ, Javadi A, Hurley SA, Steeber DA, Gong S (2010) Multifunctional SPIO/DOX-loaded wormlike polymer vesicles for cancer therapy and MR imaging. Biomaterials 31:9065–9073

    Article  CAS  Google Scholar 

  • Yi H, Ur Rehman F, Zhao C, Liu B, He N (2016) Recent advances in nano scaffolds for bone repair. Bone Res 4:16050

    Article  CAS  Google Scholar 

  • Zhao G, Fu J (2017) Microfluidics for cryopreservation. Biotechnol Adv 35:323–336

    Article  CAS  Google Scholar 

  • Zhao L, Seth A, Wibowo N, Zhao C-X, Mitter N, Yu C, Middelberg AP (2014) Nanoparticle vaccines. Vaccine 32:327–337

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Kamel.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Sayed, A., Kamel, M. Advanced applications of nanotechnology in veterinary medicine. Environ Sci Pollut Res 27, 19073–19086 (2020). https://doi.org/10.1007/s11356-018-3913-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3913-y

Keywords

Navigation